In-situ synthesized oxygen vacancy filled ZnS/Vo-ZnO heterojunction photocatalysts for efficient H2 production

Defect-filled ZnO-based heterojunctions have gained attention in photocatalytic hydrogen (H2) production due to their ability to reduce the recombination rate of photogenerated carriers at the heterojunction interface. In this study, the surface oxygen vacancy defects on ZnO (Vo-ZnO) were precisely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable Materials and Technologies 2023-12, Vol.38, p.e00731, Article e00731
Hauptverfasser: Jadhav, Sonali R., Mohite, Santosh V., Lee, Changseung, Bae, Jiyoung, Pedanekar, Rupesh S., Kim, Yeonho, Rajpure, K.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e00731
container_title Sustainable Materials and Technologies
container_volume 38
creator Jadhav, Sonali R.
Mohite, Santosh V.
Lee, Changseung
Bae, Jiyoung
Pedanekar, Rupesh S.
Kim, Yeonho
Rajpure, K.Y.
description Defect-filled ZnO-based heterojunctions have gained attention in photocatalytic hydrogen (H2) production due to their ability to reduce the recombination rate of photogenerated carriers at the heterojunction interface. In this study, the surface oxygen vacancy defects on ZnO (Vo-ZnO) were precisely tailored by decomposing the deep eutectic solvents (DES) prepared ZnO/Zn(OH)2 complex. The defective surfaces of Vo-ZnO act as nucleation sites for binding S atoms on their oxygen vacancies during in-situ photodeposition, resulting in the formation of ZnS. In this process, oxygen vacancies on the surface are electronically filled, and ZnS is simultaneously grown on ZnO. As a result, the ZnS/Vo-ZnO heterojunction photocatalyst exhibits a higher donor charge density (ND) of 3.80 × 1021 cm−3 and reduces the charge transfer resistance (Rct) by 22 kΩ compared to Vo-ZnO. The ZnS/Vo-ZnO has an H2 production rate of 18.84 mmol g−1 h−1 and follows the type-II heterojunction for charge separation. The prolonged photoluminescence lifetime (τave = 1.6 ns) in the ZnS/Vo-ZnO is attributed to the heterojunction interface between ZnS and defective ZnO. The proposed approach creates a new synthesis route for constructing the type-II heterojunction between ZnS and Vo-ZnO via an in-situ photodeposition process. ZnS/Vo-ZnO heterojunction photocatalysts are prepared by filling oxygen vacancies on Vo-ZnO surface. The interfacial charge transfer and separation in ZnS/Vo-ZnO occurred through a type-II heterojunction, resulting in efficient H2 production. [Display omitted]
doi_str_mv 10.1016/j.susmat.2023.e00731
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153187454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214993723001665</els_id><sourcerecordid>3153187454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1fc554c8443858c4db558a619aad571a5a3002e2888f1a7bb7ccbaa870da30533</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxSMEEhX0GzB4ZElrx3bjLEioAlqpUgf-DF0sx7lQV6ldbKcifHpSwsDEdKe79-70fklyQ_CEYDKb7iahDXsVJxnO6AQwzik5S0ZZRlhaFDQ__9NfJuMQdhjjjBezmWCjxC5tGkxsUehs3EIwX1Ah99m9g0VHpZXVHapN0_TTjX2evrl0Y9doCxG827VWR-MsOmxddFpF1XQhBlQ7j6CujTZgI1pk6OBd1f5Ir5OLWjUBxr_1Knl9fHiZL9LV-mk5v1-lmtIipqTWnDMtGKOCC82qknOhZqRQquI5UVzRPgNkQoiaqLwsc61LpUSOq37DKb1Kboe7_euPFkKUexM0NI2y4NogKeGUiJxx1kvZINXeheChlgdv9sp3kmB5Iix3ciAsT4TlQLi33Q026GMcDXgZTnk1VMaDjrJy5v8D378AiLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153187454</pqid></control><display><type>article</type><title>In-situ synthesized oxygen vacancy filled ZnS/Vo-ZnO heterojunction photocatalysts for efficient H2 production</title><source>Alma/SFX Local Collection</source><creator>Jadhav, Sonali R. ; Mohite, Santosh V. ; Lee, Changseung ; Bae, Jiyoung ; Pedanekar, Rupesh S. ; Kim, Yeonho ; Rajpure, K.Y.</creator><creatorcontrib>Jadhav, Sonali R. ; Mohite, Santosh V. ; Lee, Changseung ; Bae, Jiyoung ; Pedanekar, Rupesh S. ; Kim, Yeonho ; Rajpure, K.Y.</creatorcontrib><description>Defect-filled ZnO-based heterojunctions have gained attention in photocatalytic hydrogen (H2) production due to their ability to reduce the recombination rate of photogenerated carriers at the heterojunction interface. In this study, the surface oxygen vacancy defects on ZnO (Vo-ZnO) were precisely tailored by decomposing the deep eutectic solvents (DES) prepared ZnO/Zn(OH)2 complex. The defective surfaces of Vo-ZnO act as nucleation sites for binding S atoms on their oxygen vacancies during in-situ photodeposition, resulting in the formation of ZnS. In this process, oxygen vacancies on the surface are electronically filled, and ZnS is simultaneously grown on ZnO. As a result, the ZnS/Vo-ZnO heterojunction photocatalyst exhibits a higher donor charge density (ND) of 3.80 × 1021 cm−3 and reduces the charge transfer resistance (Rct) by 22 kΩ compared to Vo-ZnO. The ZnS/Vo-ZnO has an H2 production rate of 18.84 mmol g−1 h−1 and follows the type-II heterojunction for charge separation. The prolonged photoluminescence lifetime (τave = 1.6 ns) in the ZnS/Vo-ZnO is attributed to the heterojunction interface between ZnS and defective ZnO. The proposed approach creates a new synthesis route for constructing the type-II heterojunction between ZnS and Vo-ZnO via an in-situ photodeposition process. ZnS/Vo-ZnO heterojunction photocatalysts are prepared by filling oxygen vacancies on Vo-ZnO surface. The interfacial charge transfer and separation in ZnS/Vo-ZnO occurred through a type-II heterojunction, resulting in efficient H2 production. [Display omitted]</description><identifier>ISSN: 2214-9937</identifier><identifier>EISSN: 2214-9937</identifier><identifier>DOI: 10.1016/j.susmat.2023.e00731</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deep eutectic solvents process ; Green hydrogen ; hydrogen ; hydrogen production ; oxygen ; photocatalysis ; photocatalysts ; photoluminescence ; Surface defects ; Type-II heterojunction ; ZnS/ZnO nanocomposites</subject><ispartof>Sustainable Materials and Technologies, 2023-12, Vol.38, p.e00731, Article e00731</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1fc554c8443858c4db558a619aad571a5a3002e2888f1a7bb7ccbaa870da30533</citedby><cites>FETCH-LOGICAL-c339t-1fc554c8443858c4db558a619aad571a5a3002e2888f1a7bb7ccbaa870da30533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jadhav, Sonali R.</creatorcontrib><creatorcontrib>Mohite, Santosh V.</creatorcontrib><creatorcontrib>Lee, Changseung</creatorcontrib><creatorcontrib>Bae, Jiyoung</creatorcontrib><creatorcontrib>Pedanekar, Rupesh S.</creatorcontrib><creatorcontrib>Kim, Yeonho</creatorcontrib><creatorcontrib>Rajpure, K.Y.</creatorcontrib><title>In-situ synthesized oxygen vacancy filled ZnS/Vo-ZnO heterojunction photocatalysts for efficient H2 production</title><title>Sustainable Materials and Technologies</title><description>Defect-filled ZnO-based heterojunctions have gained attention in photocatalytic hydrogen (H2) production due to their ability to reduce the recombination rate of photogenerated carriers at the heterojunction interface. In this study, the surface oxygen vacancy defects on ZnO (Vo-ZnO) were precisely tailored by decomposing the deep eutectic solvents (DES) prepared ZnO/Zn(OH)2 complex. The defective surfaces of Vo-ZnO act as nucleation sites for binding S atoms on their oxygen vacancies during in-situ photodeposition, resulting in the formation of ZnS. In this process, oxygen vacancies on the surface are electronically filled, and ZnS is simultaneously grown on ZnO. As a result, the ZnS/Vo-ZnO heterojunction photocatalyst exhibits a higher donor charge density (ND) of 3.80 × 1021 cm−3 and reduces the charge transfer resistance (Rct) by 22 kΩ compared to Vo-ZnO. The ZnS/Vo-ZnO has an H2 production rate of 18.84 mmol g−1 h−1 and follows the type-II heterojunction for charge separation. The prolonged photoluminescence lifetime (τave = 1.6 ns) in the ZnS/Vo-ZnO is attributed to the heterojunction interface between ZnS and defective ZnO. The proposed approach creates a new synthesis route for constructing the type-II heterojunction between ZnS and Vo-ZnO via an in-situ photodeposition process. ZnS/Vo-ZnO heterojunction photocatalysts are prepared by filling oxygen vacancies on Vo-ZnO surface. The interfacial charge transfer and separation in ZnS/Vo-ZnO occurred through a type-II heterojunction, resulting in efficient H2 production. [Display omitted]</description><subject>Deep eutectic solvents process</subject><subject>Green hydrogen</subject><subject>hydrogen</subject><subject>hydrogen production</subject><subject>oxygen</subject><subject>photocatalysis</subject><subject>photocatalysts</subject><subject>photoluminescence</subject><subject>Surface defects</subject><subject>Type-II heterojunction</subject><subject>ZnS/ZnO nanocomposites</subject><issn>2214-9937</issn><issn>2214-9937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxSMEEhX0GzB4ZElrx3bjLEioAlqpUgf-DF0sx7lQV6ldbKcifHpSwsDEdKe79-70fklyQ_CEYDKb7iahDXsVJxnO6AQwzik5S0ZZRlhaFDQ__9NfJuMQdhjjjBezmWCjxC5tGkxsUehs3EIwX1Ah99m9g0VHpZXVHapN0_TTjX2evrl0Y9doCxG827VWR-MsOmxddFpF1XQhBlQ7j6CujTZgI1pk6OBd1f5Ir5OLWjUBxr_1Knl9fHiZL9LV-mk5v1-lmtIipqTWnDMtGKOCC82qknOhZqRQquI5UVzRPgNkQoiaqLwsc61LpUSOq37DKb1Kboe7_euPFkKUexM0NI2y4NogKeGUiJxx1kvZINXeheChlgdv9sp3kmB5Iix3ciAsT4TlQLi33Q026GMcDXgZTnk1VMaDjrJy5v8D378AiLs</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Jadhav, Sonali R.</creator><creator>Mohite, Santosh V.</creator><creator>Lee, Changseung</creator><creator>Bae, Jiyoung</creator><creator>Pedanekar, Rupesh S.</creator><creator>Kim, Yeonho</creator><creator>Rajpure, K.Y.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202312</creationdate><title>In-situ synthesized oxygen vacancy filled ZnS/Vo-ZnO heterojunction photocatalysts for efficient H2 production</title><author>Jadhav, Sonali R. ; Mohite, Santosh V. ; Lee, Changseung ; Bae, Jiyoung ; Pedanekar, Rupesh S. ; Kim, Yeonho ; Rajpure, K.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1fc554c8443858c4db558a619aad571a5a3002e2888f1a7bb7ccbaa870da30533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep eutectic solvents process</topic><topic>Green hydrogen</topic><topic>hydrogen</topic><topic>hydrogen production</topic><topic>oxygen</topic><topic>photocatalysis</topic><topic>photocatalysts</topic><topic>photoluminescence</topic><topic>Surface defects</topic><topic>Type-II heterojunction</topic><topic>ZnS/ZnO nanocomposites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jadhav, Sonali R.</creatorcontrib><creatorcontrib>Mohite, Santosh V.</creatorcontrib><creatorcontrib>Lee, Changseung</creatorcontrib><creatorcontrib>Bae, Jiyoung</creatorcontrib><creatorcontrib>Pedanekar, Rupesh S.</creatorcontrib><creatorcontrib>Kim, Yeonho</creatorcontrib><creatorcontrib>Rajpure, K.Y.</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Sustainable Materials and Technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jadhav, Sonali R.</au><au>Mohite, Santosh V.</au><au>Lee, Changseung</au><au>Bae, Jiyoung</au><au>Pedanekar, Rupesh S.</au><au>Kim, Yeonho</au><au>Rajpure, K.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ synthesized oxygen vacancy filled ZnS/Vo-ZnO heterojunction photocatalysts for efficient H2 production</atitle><jtitle>Sustainable Materials and Technologies</jtitle><date>2023-12</date><risdate>2023</risdate><volume>38</volume><spage>e00731</spage><pages>e00731-</pages><artnum>e00731</artnum><issn>2214-9937</issn><eissn>2214-9937</eissn><abstract>Defect-filled ZnO-based heterojunctions have gained attention in photocatalytic hydrogen (H2) production due to their ability to reduce the recombination rate of photogenerated carriers at the heterojunction interface. In this study, the surface oxygen vacancy defects on ZnO (Vo-ZnO) were precisely tailored by decomposing the deep eutectic solvents (DES) prepared ZnO/Zn(OH)2 complex. The defective surfaces of Vo-ZnO act as nucleation sites for binding S atoms on their oxygen vacancies during in-situ photodeposition, resulting in the formation of ZnS. In this process, oxygen vacancies on the surface are electronically filled, and ZnS is simultaneously grown on ZnO. As a result, the ZnS/Vo-ZnO heterojunction photocatalyst exhibits a higher donor charge density (ND) of 3.80 × 1021 cm−3 and reduces the charge transfer resistance (Rct) by 22 kΩ compared to Vo-ZnO. The ZnS/Vo-ZnO has an H2 production rate of 18.84 mmol g−1 h−1 and follows the type-II heterojunction for charge separation. The prolonged photoluminescence lifetime (τave = 1.6 ns) in the ZnS/Vo-ZnO is attributed to the heterojunction interface between ZnS and defective ZnO. The proposed approach creates a new synthesis route for constructing the type-II heterojunction between ZnS and Vo-ZnO via an in-situ photodeposition process. ZnS/Vo-ZnO heterojunction photocatalysts are prepared by filling oxygen vacancies on Vo-ZnO surface. The interfacial charge transfer and separation in ZnS/Vo-ZnO occurred through a type-II heterojunction, resulting in efficient H2 production. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.susmat.2023.e00731</doi></addata></record>
fulltext fulltext
identifier ISSN: 2214-9937
ispartof Sustainable Materials and Technologies, 2023-12, Vol.38, p.e00731, Article e00731
issn 2214-9937
2214-9937
language eng
recordid cdi_proquest_miscellaneous_3153187454
source Alma/SFX Local Collection
subjects Deep eutectic solvents process
Green hydrogen
hydrogen
hydrogen production
oxygen
photocatalysis
photocatalysts
photoluminescence
Surface defects
Type-II heterojunction
ZnS/ZnO nanocomposites
title In-situ synthesized oxygen vacancy filled ZnS/Vo-ZnO heterojunction photocatalysts for efficient H2 production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20synthesized%20oxygen%20vacancy%20filled%20ZnS/Vo-ZnO%20heterojunction%20photocatalysts%20for%20efficient%20H2%20production&rft.jtitle=Sustainable%20Materials%20and%20Technologies&rft.au=Jadhav,%20Sonali%20R.&rft.date=2023-12&rft.volume=38&rft.spage=e00731&rft.pages=e00731-&rft.artnum=e00731&rft.issn=2214-9937&rft.eissn=2214-9937&rft_id=info:doi/10.1016/j.susmat.2023.e00731&rft_dat=%3Cproquest_cross%3E3153187454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153187454&rft_id=info:pmid/&rft_els_id=S2214993723001665&rfr_iscdi=true