High-Performance Low-Temperature Solid Oxide Fuel Cell with a Pt@C–Ni0.8Co0.15Al0.05LiO2−δ Composite Cathode
Currently, research on low-temperature (300–600 °C) operation of solid oxide fuel cells (SOFCs) is a prominent topic in the field of fuel cells. The low-temperature operation not only helps in reducing costs but also offers significant advantages over traditional SOFCs. However, as a result of the l...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2024-04, Vol.38 (7), p.6410-6419 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6419 |
---|---|
container_issue | 7 |
container_start_page | 6410 |
container_title | Energy & fuels |
container_volume | 38 |
creator | He, Feifan Zhou, Xiaoliang Liu, Limin Sheng, Yang Jiang, Xingzhou Tang, Yang Dang, Wanyu Du, Jia Zhang, Xiucheng Niu, Yongchao |
description | Currently, research on low-temperature (300–600 °C) operation of solid oxide fuel cells (SOFCs) is a prominent topic in the field of fuel cells. The low-temperature operation not only helps in reducing costs but also offers significant advantages over traditional SOFCs. However, as a result of the low conductivity of the electrolyte and the slow cathode dynamics, the electrochemical performance of low-temperature fuel cells significantly relies on electrolyte and cathode performance. In this paper, a high-performance composite cathode comprising carbon-loaded platinum (Pt@C) and Ni0.8Co0.15Al0.05LiO2−δ (NCAL) was developed for the SOFCs based on a samarium-doped cerium oxide (SDC)–NCAL electrolyte to enhance their oxygen reduction reaction (ORR). The pressed nickel foam (Ni)–NCAL/7SDC–3NCAL/NCAL–Ni fuel cell had a peak power density of 1049 mW cm–2 at 550 °C in hydrogen. Notably, in ammonia at 400 °C, the fuel cell reached a peak power density of up to 158 mW cm–2. The results in this paper demonstrated that a high performance of the fuel cell at a low temperature could be accomplished by the cathode with efficient catalysis. |
doi_str_mv | 10.1021/acs.energyfuels.4c00629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153185399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153185399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a232t-852d54dcbac7ea1774adf7935b677836173c513a54907c7a1de6bcf0884758a63</originalsourceid><addsrcrecordid>eNpNkEFOwzAQRS0EEqVwBrxkk2DHcezsqCKgSBGtRFlHrjNpUyVxGycq7FiyhqtwDg7Rk-CqXbAa6etr5s1D6JoSn5KA3iptfWigXbwXPVTWDzUhURCfoAHlAfE4CeJTNCBSCs_l4Tm6sHZFXIdJPkCbcblYelNoC9PWqtGAU7P1ZlCvoVVd3wJ-MVWZ48lbmQN-cBdwAlWFt2W3xApPu7tk9_H9XBJfJsYR8VFFfMLTchLsPr9-f3Bi6rWxZQc4Ud3S5HCJzgpVWbg6ziF6fbifJWMvnTw-JaPUUwELOk_yIOdhrudKC1BUiFDlhYgZn0dCSBZRwTSnTPEwJkILRXOI5rpwf4aCSxWxIbo57F23ZtOD7bK6tNqxqwZMbzNGOaOSszh2VXaoOpfZyvRt48AySrK94Gwf_hOcHQWzP8cNc_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153185399</pqid></control><display><type>article</type><title>High-Performance Low-Temperature Solid Oxide Fuel Cell with a Pt@C–Ni0.8Co0.15Al0.05LiO2−δ Composite Cathode</title><source>American Chemical Society Journals</source><creator>He, Feifan ; Zhou, Xiaoliang ; Liu, Limin ; Sheng, Yang ; Jiang, Xingzhou ; Tang, Yang ; Dang, Wanyu ; Du, Jia ; Zhang, Xiucheng ; Niu, Yongchao</creator><creatorcontrib>He, Feifan ; Zhou, Xiaoliang ; Liu, Limin ; Sheng, Yang ; Jiang, Xingzhou ; Tang, Yang ; Dang, Wanyu ; Du, Jia ; Zhang, Xiucheng ; Niu, Yongchao</creatorcontrib><description>Currently, research on low-temperature (300–600 °C) operation of solid oxide fuel cells (SOFCs) is a prominent topic in the field of fuel cells. The low-temperature operation not only helps in reducing costs but also offers significant advantages over traditional SOFCs. However, as a result of the low conductivity of the electrolyte and the slow cathode dynamics, the electrochemical performance of low-temperature fuel cells significantly relies on electrolyte and cathode performance. In this paper, a high-performance composite cathode comprising carbon-loaded platinum (Pt@C) and Ni0.8Co0.15Al0.05LiO2−δ (NCAL) was developed for the SOFCs based on a samarium-doped cerium oxide (SDC)–NCAL electrolyte to enhance their oxygen reduction reaction (ORR). The pressed nickel foam (Ni)–NCAL/7SDC–3NCAL/NCAL–Ni fuel cell had a peak power density of 1049 mW cm–2 at 550 °C in hydrogen. Notably, in ammonia at 400 °C, the fuel cell reached a peak power density of up to 158 mW cm–2. The results in this paper demonstrated that a high performance of the fuel cell at a low temperature could be accomplished by the cathode with efficient catalysis.</description><identifier>ISSN: 0887-0624</identifier><identifier>ISSN: 1520-5029</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.4c00629</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>ammonia ; catalytic activity ; cathodes ; ceric oxide ; electrochemistry ; electrolytes ; energy ; foams ; Fuel Cells ; fuels ; hydrogen ; nickel ; platinum ; temperature</subject><ispartof>Energy & fuels, 2024-04, Vol.38 (7), p.6410-6419</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0006-5680-8975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.4c00629$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.4c00629$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>He, Feifan</creatorcontrib><creatorcontrib>Zhou, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Limin</creatorcontrib><creatorcontrib>Sheng, Yang</creatorcontrib><creatorcontrib>Jiang, Xingzhou</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Dang, Wanyu</creatorcontrib><creatorcontrib>Du, Jia</creatorcontrib><creatorcontrib>Zhang, Xiucheng</creatorcontrib><creatorcontrib>Niu, Yongchao</creatorcontrib><title>High-Performance Low-Temperature Solid Oxide Fuel Cell with a Pt@C–Ni0.8Co0.15Al0.05LiO2−δ Composite Cathode</title><title>Energy & fuels</title><addtitle>Energy Fuels</addtitle><description>Currently, research on low-temperature (300–600 °C) operation of solid oxide fuel cells (SOFCs) is a prominent topic in the field of fuel cells. The low-temperature operation not only helps in reducing costs but also offers significant advantages over traditional SOFCs. However, as a result of the low conductivity of the electrolyte and the slow cathode dynamics, the electrochemical performance of low-temperature fuel cells significantly relies on electrolyte and cathode performance. In this paper, a high-performance composite cathode comprising carbon-loaded platinum (Pt@C) and Ni0.8Co0.15Al0.05LiO2−δ (NCAL) was developed for the SOFCs based on a samarium-doped cerium oxide (SDC)–NCAL electrolyte to enhance their oxygen reduction reaction (ORR). The pressed nickel foam (Ni)–NCAL/7SDC–3NCAL/NCAL–Ni fuel cell had a peak power density of 1049 mW cm–2 at 550 °C in hydrogen. Notably, in ammonia at 400 °C, the fuel cell reached a peak power density of up to 158 mW cm–2. The results in this paper demonstrated that a high performance of the fuel cell at a low temperature could be accomplished by the cathode with efficient catalysis.</description><subject>ammonia</subject><subject>catalytic activity</subject><subject>cathodes</subject><subject>ceric oxide</subject><subject>electrochemistry</subject><subject>electrolytes</subject><subject>energy</subject><subject>foams</subject><subject>Fuel Cells</subject><subject>fuels</subject><subject>hydrogen</subject><subject>nickel</subject><subject>platinum</subject><subject>temperature</subject><issn>0887-0624</issn><issn>1520-5029</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFOwzAQRS0EEqVwBrxkk2DHcezsqCKgSBGtRFlHrjNpUyVxGycq7FiyhqtwDg7Rk-CqXbAa6etr5s1D6JoSn5KA3iptfWigXbwXPVTWDzUhURCfoAHlAfE4CeJTNCBSCs_l4Tm6sHZFXIdJPkCbcblYelNoC9PWqtGAU7P1ZlCvoVVd3wJ-MVWZ48lbmQN-cBdwAlWFt2W3xApPu7tk9_H9XBJfJsYR8VFFfMLTchLsPr9-f3Bi6rWxZQc4Ud3S5HCJzgpVWbg6ziF6fbifJWMvnTw-JaPUUwELOk_yIOdhrudKC1BUiFDlhYgZn0dCSBZRwTSnTPEwJkILRXOI5rpwf4aCSxWxIbo57F23ZtOD7bK6tNqxqwZMbzNGOaOSszh2VXaoOpfZyvRt48AySrK94Gwf_hOcHQWzP8cNc_4</recordid><startdate>20240404</startdate><enddate>20240404</enddate><creator>He, Feifan</creator><creator>Zhou, Xiaoliang</creator><creator>Liu, Limin</creator><creator>Sheng, Yang</creator><creator>Jiang, Xingzhou</creator><creator>Tang, Yang</creator><creator>Dang, Wanyu</creator><creator>Du, Jia</creator><creator>Zhang, Xiucheng</creator><creator>Niu, Yongchao</creator><general>American Chemical Society</general><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0006-5680-8975</orcidid></search><sort><creationdate>20240404</creationdate><title>High-Performance Low-Temperature Solid Oxide Fuel Cell with a Pt@C–Ni0.8Co0.15Al0.05LiO2−δ Composite Cathode</title><author>He, Feifan ; Zhou, Xiaoliang ; Liu, Limin ; Sheng, Yang ; Jiang, Xingzhou ; Tang, Yang ; Dang, Wanyu ; Du, Jia ; Zhang, Xiucheng ; Niu, Yongchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a232t-852d54dcbac7ea1774adf7935b677836173c513a54907c7a1de6bcf0884758a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ammonia</topic><topic>catalytic activity</topic><topic>cathodes</topic><topic>ceric oxide</topic><topic>electrochemistry</topic><topic>electrolytes</topic><topic>energy</topic><topic>foams</topic><topic>Fuel Cells</topic><topic>fuels</topic><topic>hydrogen</topic><topic>nickel</topic><topic>platinum</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Feifan</creatorcontrib><creatorcontrib>Zhou, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Limin</creatorcontrib><creatorcontrib>Sheng, Yang</creatorcontrib><creatorcontrib>Jiang, Xingzhou</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Dang, Wanyu</creatorcontrib><creatorcontrib>Du, Jia</creatorcontrib><creatorcontrib>Zhang, Xiucheng</creatorcontrib><creatorcontrib>Niu, Yongchao</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Feifan</au><au>Zhou, Xiaoliang</au><au>Liu, Limin</au><au>Sheng, Yang</au><au>Jiang, Xingzhou</au><au>Tang, Yang</au><au>Dang, Wanyu</au><au>Du, Jia</au><au>Zhang, Xiucheng</au><au>Niu, Yongchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Low-Temperature Solid Oxide Fuel Cell with a Pt@C–Ni0.8Co0.15Al0.05LiO2−δ Composite Cathode</atitle><jtitle>Energy & fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2024-04-04</date><risdate>2024</risdate><volume>38</volume><issue>7</issue><spage>6410</spage><epage>6419</epage><pages>6410-6419</pages><issn>0887-0624</issn><issn>1520-5029</issn><eissn>1520-5029</eissn><abstract>Currently, research on low-temperature (300–600 °C) operation of solid oxide fuel cells (SOFCs) is a prominent topic in the field of fuel cells. The low-temperature operation not only helps in reducing costs but also offers significant advantages over traditional SOFCs. However, as a result of the low conductivity of the electrolyte and the slow cathode dynamics, the electrochemical performance of low-temperature fuel cells significantly relies on electrolyte and cathode performance. In this paper, a high-performance composite cathode comprising carbon-loaded platinum (Pt@C) and Ni0.8Co0.15Al0.05LiO2−δ (NCAL) was developed for the SOFCs based on a samarium-doped cerium oxide (SDC)–NCAL electrolyte to enhance their oxygen reduction reaction (ORR). The pressed nickel foam (Ni)–NCAL/7SDC–3NCAL/NCAL–Ni fuel cell had a peak power density of 1049 mW cm–2 at 550 °C in hydrogen. Notably, in ammonia at 400 °C, the fuel cell reached a peak power density of up to 158 mW cm–2. The results in this paper demonstrated that a high performance of the fuel cell at a low temperature could be accomplished by the cathode with efficient catalysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.4c00629</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0006-5680-8975</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-0624 |
ispartof | Energy & fuels, 2024-04, Vol.38 (7), p.6410-6419 |
issn | 0887-0624 1520-5029 1520-5029 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153185399 |
source | American Chemical Society Journals |
subjects | ammonia catalytic activity cathodes ceric oxide electrochemistry electrolytes energy foams Fuel Cells fuels hydrogen nickel platinum temperature |
title | High-Performance Low-Temperature Solid Oxide Fuel Cell with a Pt@C–Ni0.8Co0.15Al0.05LiO2−δ Composite Cathode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Low-Temperature%20Solid%20Oxide%20Fuel%20Cell%20with%20a%20Pt@C%E2%80%93Ni0.8Co0.15Al0.05LiO2%E2%88%92%CE%B4%20Composite%20Cathode&rft.jtitle=Energy%20&%20fuels&rft.au=He,%20Feifan&rft.date=2024-04-04&rft.volume=38&rft.issue=7&rft.spage=6410&rft.epage=6419&rft.pages=6410-6419&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.4c00629&rft_dat=%3Cproquest_acs_j%3E3153185399%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153185399&rft_id=info:pmid/&rfr_iscdi=true |