Adsorption and Co-adsorption of 2,4-Difluoroaniline and Copper (II) Using Nickel-Manganese Ferrite Magnetic Biochar Derived from Orange Peel

The adsorption process is regarded as a promising technology for removing organics and heavy metals. In this study, we used orange peels as biomass feedstock and used nickel-manganese ferrite (Ni 1-x Mn x Fe 2 O 4 ) as the precursor solution to prepare magnetic mesoporous biochar (MBC). Using a Box-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2023-07, Vol.234 (7), p.427-427, Article 427
Hauptverfasser: Zhao, Zhi-Qing, Shen, Xiao-Li, Gao, Long-Ji, Jin, Xin, Li, Yan-Mei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 7
container_start_page 427
container_title Water, air, and soil pollution
container_volume 234
creator Zhao, Zhi-Qing
Shen, Xiao-Li
Gao, Long-Ji
Jin, Xin
Li, Yan-Mei
description The adsorption process is regarded as a promising technology for removing organics and heavy metals. In this study, we used orange peels as biomass feedstock and used nickel-manganese ferrite (Ni 1-x Mn x Fe 2 O 4 ) as the precursor solution to prepare magnetic mesoporous biochar (MBC). Using a Box-Behnken design response, we investigated the adsorption of 2,4-difluoroaniline (2,4-DFA), as well as the influence of four preparation parameters (activation temperature, the molar mass of Mn in Ni 1-x Mn x Fe 2 O 4 , activation time, and impregnation ratio). Based on the adsorption rate of 2,4-DFA, we obtained the following optimal preparation parameters of MBC: a temperature of 180 °C, a molar mass of Ni 0.75 Mn 0.25 Fe 2 O 4 , an activation time of 8 h, and an impregnation ratio of 3. Then, we investigated the adsorption capacity of MBC and the mutual effect of 2,4-DFA and copper (II) [Cu(II)] through single and binary systems. The adsorption processes of 2,4-DFA and Cu(II) could be satisfactorily fitted to a pseudo-second-order kinetic model. The adsorption amount of 2,4-DFA was comparable in both single and binary systems. However, the adsorption of Cu(II) in the binary system was inhibited, with the adsorption capacity decreasing by 19.55%. The adsorption isotherms of 2,4-DFA and Cu(II) to MBC fitted the Freundlich model. The maximum adsorption capacity of 2,4-DFA and Cu(II) could reach 66.30 mg/g and 10.44 mg/g at 313 K, respectively. MBC exhibited good regeneration performance through the combination of 90% ethanol and 1 M NaOH solution. The adsorption mechanism mainly included electrostatic interactions, hydrogen bonds, ion exchange, and π-π interactions.
doi_str_mv 10.1007/s11270-023-06445-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153184920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A754967565</galeid><sourcerecordid>A754967565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-53272b2740d5dcc14422a8e73d6bb62e9a345d567fb128230a53333fb99d1eee3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0EEkvhBThZ4lKkuvhvHB-XLaUrtZQDPVuOM1lcsnaws0j7Djw0hlSqxKHjg6XR941G80PoLaPnjFL9oTDGNSWUC0IbKRU5PkMrprQg3Aj-HK0olYY0RpuX6FUp97SWafUK_V73JeVpDiliF3u8ScQ9dtKA-ZkkF2EYDyknF8MYIjyA0wQZn2637_FdCXGHvwT_A0Zy4-LORSiALyHnMAO-cbsIc_D4Y0j-u8v4AnL4BT0ectrj21wFwF8BxtfoxeDGAm8e_hN0d_np2-aKXN9-3m7W18QLw2aiBNe841rSXvXeMyk5dy1o0Tdd13AwTkjVq0YPHeMtF9QpUWvojOkZAIgTdLrMnXL6eYAy230oHsax7p0OxQqmBGul4bSi7_5D79Mhx7qdraONMbI1rFLnC7VzI9gQhzRn5-vrYR98ijCE2l9rJU2jVaOqwBfB51RKhsFOOexdPlpG7d9E7ZKorYnaf4naY5XEIpUK15vlx12esP4AJ4KjCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829994891</pqid></control><display><type>article</type><title>Adsorption and Co-adsorption of 2,4-Difluoroaniline and Copper (II) Using Nickel-Manganese Ferrite Magnetic Biochar Derived from Orange Peel</title><source>SpringerLink Journals</source><creator>Zhao, Zhi-Qing ; Shen, Xiao-Li ; Gao, Long-Ji ; Jin, Xin ; Li, Yan-Mei</creator><creatorcontrib>Zhao, Zhi-Qing ; Shen, Xiao-Li ; Gao, Long-Ji ; Jin, Xin ; Li, Yan-Mei</creatorcontrib><description>The adsorption process is regarded as a promising technology for removing organics and heavy metals. In this study, we used orange peels as biomass feedstock and used nickel-manganese ferrite (Ni 1-x Mn x Fe 2 O 4 ) as the precursor solution to prepare magnetic mesoporous biochar (MBC). Using a Box-Behnken design response, we investigated the adsorption of 2,4-difluoroaniline (2,4-DFA), as well as the influence of four preparation parameters (activation temperature, the molar mass of Mn in Ni 1-x Mn x Fe 2 O 4 , activation time, and impregnation ratio). Based on the adsorption rate of 2,4-DFA, we obtained the following optimal preparation parameters of MBC: a temperature of 180 °C, a molar mass of Ni 0.75 Mn 0.25 Fe 2 O 4 , an activation time of 8 h, and an impregnation ratio of 3. Then, we investigated the adsorption capacity of MBC and the mutual effect of 2,4-DFA and copper (II) [Cu(II)] through single and binary systems. The adsorption processes of 2,4-DFA and Cu(II) could be satisfactorily fitted to a pseudo-second-order kinetic model. The adsorption amount of 2,4-DFA was comparable in both single and binary systems. However, the adsorption of Cu(II) in the binary system was inhibited, with the adsorption capacity decreasing by 19.55%. The adsorption isotherms of 2,4-DFA and Cu(II) to MBC fitted the Freundlich model. The maximum adsorption capacity of 2,4-DFA and Cu(II) could reach 66.30 mg/g and 10.44 mg/g at 313 K, respectively. MBC exhibited good regeneration performance through the combination of 90% ethanol and 1 M NaOH solution. The adsorption mechanism mainly included electrostatic interactions, hydrogen bonds, ion exchange, and π-π interactions.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-023-06445-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adsorption ; air ; Atmospheric Protection/Air Quality Control/Air Pollution ; Binary systems ; biochar ; biomass ; Capacity ; Charcoal ; Chemical bonds ; Climate Change/Climate Change Impacts ; Copper ; Copper compounds ; Earth and Environmental Science ; Electrostatic properties ; Environment ; Environmental monitoring ; Ethanol ; experimental design ; feedstocks ; ferrimagnetic materials ; Ferrites ; Heavy metals ; hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Hydrogeology ; Ion exchange ; Iron compounds ; kinetics ; magnetism ; Manganese ; Mathematical models ; Metals ; molecular weight ; Nickel ; orange peels ; Parameters ; porous media ; Sodium hydroxide ; soil ; Soil Science &amp; Conservation ; sorption isotherms ; Technology application ; Temperature ; water ; Water Quality/Water Pollution</subject><ispartof>Water, air, and soil pollution, 2023-07, Vol.234 (7), p.427-427, Article 427</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-53272b2740d5dcc14422a8e73d6bb62e9a345d567fb128230a53333fb99d1eee3</citedby><cites>FETCH-LOGICAL-c391t-53272b2740d5dcc14422a8e73d6bb62e9a345d567fb128230a53333fb99d1eee3</cites><orcidid>0000-0001-5441-0193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-023-06445-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-023-06445-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhao, Zhi-Qing</creatorcontrib><creatorcontrib>Shen, Xiao-Li</creatorcontrib><creatorcontrib>Gao, Long-Ji</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Li, Yan-Mei</creatorcontrib><title>Adsorption and Co-adsorption of 2,4-Difluoroaniline and Copper (II) Using Nickel-Manganese Ferrite Magnetic Biochar Derived from Orange Peel</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>The adsorption process is regarded as a promising technology for removing organics and heavy metals. In this study, we used orange peels as biomass feedstock and used nickel-manganese ferrite (Ni 1-x Mn x Fe 2 O 4 ) as the precursor solution to prepare magnetic mesoporous biochar (MBC). Using a Box-Behnken design response, we investigated the adsorption of 2,4-difluoroaniline (2,4-DFA), as well as the influence of four preparation parameters (activation temperature, the molar mass of Mn in Ni 1-x Mn x Fe 2 O 4 , activation time, and impregnation ratio). Based on the adsorption rate of 2,4-DFA, we obtained the following optimal preparation parameters of MBC: a temperature of 180 °C, a molar mass of Ni 0.75 Mn 0.25 Fe 2 O 4 , an activation time of 8 h, and an impregnation ratio of 3. Then, we investigated the adsorption capacity of MBC and the mutual effect of 2,4-DFA and copper (II) [Cu(II)] through single and binary systems. The adsorption processes of 2,4-DFA and Cu(II) could be satisfactorily fitted to a pseudo-second-order kinetic model. The adsorption amount of 2,4-DFA was comparable in both single and binary systems. However, the adsorption of Cu(II) in the binary system was inhibited, with the adsorption capacity decreasing by 19.55%. The adsorption isotherms of 2,4-DFA and Cu(II) to MBC fitted the Freundlich model. The maximum adsorption capacity of 2,4-DFA and Cu(II) could reach 66.30 mg/g and 10.44 mg/g at 313 K, respectively. MBC exhibited good regeneration performance through the combination of 90% ethanol and 1 M NaOH solution. The adsorption mechanism mainly included electrostatic interactions, hydrogen bonds, ion exchange, and π-π interactions.</description><subject>Adsorption</subject><subject>air</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Binary systems</subject><subject>biochar</subject><subject>biomass</subject><subject>Capacity</subject><subject>Charcoal</subject><subject>Chemical bonds</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Copper</subject><subject>Copper compounds</subject><subject>Earth and Environmental Science</subject><subject>Electrostatic properties</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Ethanol</subject><subject>experimental design</subject><subject>feedstocks</subject><subject>ferrimagnetic materials</subject><subject>Ferrites</subject><subject>Heavy metals</subject><subject>hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrogeology</subject><subject>Ion exchange</subject><subject>Iron compounds</subject><subject>kinetics</subject><subject>magnetism</subject><subject>Manganese</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>molecular weight</subject><subject>Nickel</subject><subject>orange peels</subject><subject>Parameters</subject><subject>porous media</subject><subject>Sodium hydroxide</subject><subject>soil</subject><subject>Soil Science &amp; Conservation</subject><subject>sorption isotherms</subject><subject>Technology application</subject><subject>Temperature</subject><subject>water</subject><subject>Water Quality/Water Pollution</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9u1DAQhy0EEkvhBThZ4lKkuvhvHB-XLaUrtZQDPVuOM1lcsnaws0j7Djw0hlSqxKHjg6XR941G80PoLaPnjFL9oTDGNSWUC0IbKRU5PkMrprQg3Aj-HK0olYY0RpuX6FUp97SWafUK_V73JeVpDiliF3u8ScQ9dtKA-ZkkF2EYDyknF8MYIjyA0wQZn2637_FdCXGHvwT_A0Zy4-LORSiALyHnMAO-cbsIc_D4Y0j-u8v4AnL4BT0ectrj21wFwF8BxtfoxeDGAm8e_hN0d_np2-aKXN9-3m7W18QLw2aiBNe841rSXvXeMyk5dy1o0Tdd13AwTkjVq0YPHeMtF9QpUWvojOkZAIgTdLrMnXL6eYAy230oHsax7p0OxQqmBGul4bSi7_5D79Mhx7qdraONMbI1rFLnC7VzI9gQhzRn5-vrYR98ijCE2l9rJU2jVaOqwBfB51RKhsFOOexdPlpG7d9E7ZKorYnaf4naY5XEIpUK15vlx12esP4AJ4KjCA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhao, Zhi-Qing</creator><creator>Shen, Xiao-Li</creator><creator>Gao, Long-Ji</creator><creator>Jin, Xin</creator><creator>Li, Yan-Mei</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5441-0193</orcidid></search><sort><creationdate>20230701</creationdate><title>Adsorption and Co-adsorption of 2,4-Difluoroaniline and Copper (II) Using Nickel-Manganese Ferrite Magnetic Biochar Derived from Orange Peel</title><author>Zhao, Zhi-Qing ; Shen, Xiao-Li ; Gao, Long-Ji ; Jin, Xin ; Li, Yan-Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-53272b2740d5dcc14422a8e73d6bb62e9a345d567fb128230a53333fb99d1eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>air</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Binary systems</topic><topic>biochar</topic><topic>biomass</topic><topic>Capacity</topic><topic>Charcoal</topic><topic>Chemical bonds</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Copper</topic><topic>Copper compounds</topic><topic>Earth and Environmental Science</topic><topic>Electrostatic properties</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Ethanol</topic><topic>experimental design</topic><topic>feedstocks</topic><topic>ferrimagnetic materials</topic><topic>Ferrites</topic><topic>Heavy metals</topic><topic>hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrogeology</topic><topic>Ion exchange</topic><topic>Iron compounds</topic><topic>kinetics</topic><topic>magnetism</topic><topic>Manganese</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>molecular weight</topic><topic>Nickel</topic><topic>orange peels</topic><topic>Parameters</topic><topic>porous media</topic><topic>Sodium hydroxide</topic><topic>soil</topic><topic>Soil Science &amp; Conservation</topic><topic>sorption isotherms</topic><topic>Technology application</topic><topic>Temperature</topic><topic>water</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhi-Qing</creatorcontrib><creatorcontrib>Shen, Xiao-Li</creatorcontrib><creatorcontrib>Gao, Long-Ji</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Li, Yan-Mei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhi-Qing</au><au>Shen, Xiao-Li</au><au>Gao, Long-Ji</au><au>Jin, Xin</au><au>Li, Yan-Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption and Co-adsorption of 2,4-Difluoroaniline and Copper (II) Using Nickel-Manganese Ferrite Magnetic Biochar Derived from Orange Peel</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>234</volume><issue>7</issue><spage>427</spage><epage>427</epage><pages>427-427</pages><artnum>427</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>The adsorption process is regarded as a promising technology for removing organics and heavy metals. In this study, we used orange peels as biomass feedstock and used nickel-manganese ferrite (Ni 1-x Mn x Fe 2 O 4 ) as the precursor solution to prepare magnetic mesoporous biochar (MBC). Using a Box-Behnken design response, we investigated the adsorption of 2,4-difluoroaniline (2,4-DFA), as well as the influence of four preparation parameters (activation temperature, the molar mass of Mn in Ni 1-x Mn x Fe 2 O 4 , activation time, and impregnation ratio). Based on the adsorption rate of 2,4-DFA, we obtained the following optimal preparation parameters of MBC: a temperature of 180 °C, a molar mass of Ni 0.75 Mn 0.25 Fe 2 O 4 , an activation time of 8 h, and an impregnation ratio of 3. Then, we investigated the adsorption capacity of MBC and the mutual effect of 2,4-DFA and copper (II) [Cu(II)] through single and binary systems. The adsorption processes of 2,4-DFA and Cu(II) could be satisfactorily fitted to a pseudo-second-order kinetic model. The adsorption amount of 2,4-DFA was comparable in both single and binary systems. However, the adsorption of Cu(II) in the binary system was inhibited, with the adsorption capacity decreasing by 19.55%. The adsorption isotherms of 2,4-DFA and Cu(II) to MBC fitted the Freundlich model. The maximum adsorption capacity of 2,4-DFA and Cu(II) could reach 66.30 mg/g and 10.44 mg/g at 313 K, respectively. MBC exhibited good regeneration performance through the combination of 90% ethanol and 1 M NaOH solution. The adsorption mechanism mainly included electrostatic interactions, hydrogen bonds, ion exchange, and π-π interactions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11270-023-06445-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5441-0193</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0049-6979
ispartof Water, air, and soil pollution, 2023-07, Vol.234 (7), p.427-427, Article 427
issn 0049-6979
1573-2932
language eng
recordid cdi_proquest_miscellaneous_3153184920
source SpringerLink Journals
subjects Adsorption
air
Atmospheric Protection/Air Quality Control/Air Pollution
Binary systems
biochar
biomass
Capacity
Charcoal
Chemical bonds
Climate Change/Climate Change Impacts
Copper
Copper compounds
Earth and Environmental Science
Electrostatic properties
Environment
Environmental monitoring
Ethanol
experimental design
feedstocks
ferrimagnetic materials
Ferrites
Heavy metals
hydrogen
Hydrogen bonding
Hydrogen bonds
Hydrogeology
Ion exchange
Iron compounds
kinetics
magnetism
Manganese
Mathematical models
Metals
molecular weight
Nickel
orange peels
Parameters
porous media
Sodium hydroxide
soil
Soil Science & Conservation
sorption isotherms
Technology application
Temperature
water
Water Quality/Water Pollution
title Adsorption and Co-adsorption of 2,4-Difluoroaniline and Copper (II) Using Nickel-Manganese Ferrite Magnetic Biochar Derived from Orange Peel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20and%20Co-adsorption%20of%202,4-Difluoroaniline%20and%20Copper%20(II)%20Using%20Nickel-Manganese%20Ferrite%20Magnetic%20Biochar%20Derived%20from%20Orange%20Peel&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Zhao,%20Zhi-Qing&rft.date=2023-07-01&rft.volume=234&rft.issue=7&rft.spage=427&rft.epage=427&rft.pages=427-427&rft.artnum=427&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-023-06445-y&rft_dat=%3Cgale_proqu%3EA754967565%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829994891&rft_id=info:pmid/&rft_galeid=A754967565&rfr_iscdi=true