Simultaneous estimation of five temporally regular land variables at seven spatial resolutions from seven satellite data using a multi-scale and multi-depth convolutional neural network

Various satellite sensors have provided a huge amount of observations of Earth's environment at variable spatial and temporal resolutions. Many global coarse-resolution land products have been generated from single-satellite data, but global temporally regular land products at fine spatial reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2024-02, Vol.301, p.113928, Article 113928
Hauptverfasser: Zhang, Guodong, Liang, Shunlin, Ma, Han, He, Tao, Yin, Gaofei, Xu, Jianglei, Liu, Xiaobang, Zhang, Yufang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113928
container_title Remote sensing of environment
container_volume 301
creator Zhang, Guodong
Liang, Shunlin
Ma, Han
He, Tao
Yin, Gaofei
Xu, Jianglei
Liu, Xiaobang
Zhang, Yufang
description Various satellite sensors have provided a huge amount of observations of Earth's environment at variable spatial and temporal resolutions. Many global coarse-resolution land products have been generated from single-satellite data, but global temporally regular land products at fine spatial resolutions (say 10-30 m) are scarce because of infrequent observations. An ideal inversion framework can estimate multiple global continuous land variables at different spatial resolutions by combining all sources of satellite data. This paper proposes a new framework that can estimate five land variables simultaneously from the top-of-atmosphere (TOA) reflectance acquired by seven satellite sensors based on a multi-scale and multi-depth convolutional neural network (MSDCNN). This framework enables us to estimate temporally regular land variables at as fine as 10 m spatial resolution by transforming information from satellite data at coarser spatial resolutions. The estimated land variables include Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), shortwave albedo, visible albedo, and spectral reflectance. Seven sensors that acquire data at different spatial resolutions, include Visible Infrared Imaging Radiometer Suite (VIIRS) (750 m), Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m), Fengyun-3 (FY-3) Medium Resolution Spectral Imager (MERSI) (250 m), China-Brazil Earth Resources Satellite 04 (CBERS-04) Wide Field Imager (WFI) (73 m), Landsat 8 Operational Land Imager (OLI) (30 m), Gaofen-1 (GF-1) Wide-Field-of-View (16 m) and Sentinel 2 A/B Multispectral Imager (MSI) (10 m). This framework is mainly composed of four steps. First, a Shuffled Complex Evolution (SCE) optimization method is adopted to estimate these variables from VIIRS TOA reference. Second, a joint-output random forest regression (RF) method is used to link the satellite observations and the estimated values from step 1. Third, the six-type multi-resolution satellite observations are used to downscale the VIIRS TOA reflectance to six different spatial resolutions by using the MSDCNN. Finally, the downscaled six-resolution VIIRS TOA reflectance is fed into the multiple-variable RF model to estimate land variables. The framework was validated, and the results based on high-resolution reference maps from ImagineS network and time series shortwave albedo field values from Surface Radiation (SURFRAD) and Integrated Carbon Observation System (ICOS) network s
doi_str_mv 10.1016/j.rse.2023.113928
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153181864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425723004807</els_id><sourcerecordid>3153181864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-588631a65d6f0e87eb9ed3fe06ca834f30c933bc5c7d13ab170b664641e261ee3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEEpeWB-jOSza5eOLE8RUrVPEnVWLRdm1NnEnxxYmD7QT10fp2OKRsWY1GPuez5pyiuAJ-BA7y_fkYIh0rXokjgDhV6kVxANWeSt7y-mVx4FzUZV017eviTYxnzqFRLRyKp1s7Li7hRH6JjGKyIybrJ-YHNtiVWKJx9gGde2SBHhaHgTmcerZisNg5igwTi7TSxOKcreiyLnq3bJTIhuDHf8-YyDmbiPWYkC3RTg8M2fa9LaNBR2wD73tPc_rBjJ_WZ1TmTrSEvyP99uHnZfFqQBfp7fO8KO4_f7q7_lrefP_y7frjTWkqVaWyUUoKQNn0cuCkWupO1IuBuDSoRD0Ibk5CdKYxbQ8CO2h5J2Uta6BKApG4KN7t3Dn4X0tOSI82mnzJnpkW0AhQoGSdpbBLTfAxBhr0HHKe4VED11tN-qxzTXqrSe81Zc-H3UP5htVS0NFYmgz1NpBJuvf2P-4_W1Gg-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153181864</pqid></control><display><type>article</type><title>Simultaneous estimation of five temporally regular land variables at seven spatial resolutions from seven satellite data using a multi-scale and multi-depth convolutional neural network</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Guodong ; Liang, Shunlin ; Ma, Han ; He, Tao ; Yin, Gaofei ; Xu, Jianglei ; Liu, Xiaobang ; Zhang, Yufang</creator><creatorcontrib>Zhang, Guodong ; Liang, Shunlin ; Ma, Han ; He, Tao ; Yin, Gaofei ; Xu, Jianglei ; Liu, Xiaobang ; Zhang, Yufang</creatorcontrib><description>Various satellite sensors have provided a huge amount of observations of Earth's environment at variable spatial and temporal resolutions. Many global coarse-resolution land products have been generated from single-satellite data, but global temporally regular land products at fine spatial resolutions (say 10-30 m) are scarce because of infrequent observations. An ideal inversion framework can estimate multiple global continuous land variables at different spatial resolutions by combining all sources of satellite data. This paper proposes a new framework that can estimate five land variables simultaneously from the top-of-atmosphere (TOA) reflectance acquired by seven satellite sensors based on a multi-scale and multi-depth convolutional neural network (MSDCNN). This framework enables us to estimate temporally regular land variables at as fine as 10 m spatial resolution by transforming information from satellite data at coarser spatial resolutions. The estimated land variables include Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), shortwave albedo, visible albedo, and spectral reflectance. Seven sensors that acquire data at different spatial resolutions, include Visible Infrared Imaging Radiometer Suite (VIIRS) (750 m), Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m), Fengyun-3 (FY-3) Medium Resolution Spectral Imager (MERSI) (250 m), China-Brazil Earth Resources Satellite 04 (CBERS-04) Wide Field Imager (WFI) (73 m), Landsat 8 Operational Land Imager (OLI) (30 m), Gaofen-1 (GF-1) Wide-Field-of-View (16 m) and Sentinel 2 A/B Multispectral Imager (MSI) (10 m). This framework is mainly composed of four steps. First, a Shuffled Complex Evolution (SCE) optimization method is adopted to estimate these variables from VIIRS TOA reference. Second, a joint-output random forest regression (RF) method is used to link the satellite observations and the estimated values from step 1. Third, the six-type multi-resolution satellite observations are used to downscale the VIIRS TOA reflectance to six different spatial resolutions by using the MSDCNN. Finally, the downscaled six-resolution VIIRS TOA reflectance is fed into the multiple-variable RF model to estimate land variables. The framework was validated, and the results based on high-resolution reference maps from ImagineS network and time series shortwave albedo field values from Surface Radiation (SURFRAD) and Integrated Carbon Observation System (ICOS) network show that the retrieved variables had high validation accuracy, with root mean square error (RMSE) ranges of 0.361–0.489 (LAI), 0.023–0.120 (FAPAR), 0.013–0.026 (snow-free shortwave albedo), respectively. Comparison results of the retrieved multi-scale variables with the Sentinel 2 A/B (10 m), Landsat 8 (30 m), Global LAnd Surface Satellite (GLASS, 250 m, 500 m), MODIS (500 m), and VIIRS (750 m) products show that their values were close, with RMSE ranges of 0.107–0.273 (LAI), 0.015–0.027 (FAPAR), 0.003–0.007 (shortwave albedo), 0.001–0.007 (visible albedo), and 0.003–0.025 (spectral reflectance), respectively. The results of the direct validation as well as the product intercomparison show that this novel framework has the potential to be used in estimating global land variables at various spatial scales using a variety of satellite data sources. •Exploring a deep learning method for seven-resolution land surface variable estimation.•The finest resolution of estimated variable is 10 m and the temporal continuity is improved.•Estimated variables at seven resolution have consistent spatial distribution.•The estimated multi-resolution variables have high accuracy based on extensive validation.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2023.113928</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>algorithms ; carbon ; environment ; Joint-output RF ; Landsat ; leaf area index ; MSDCNN ; Multiple variables ; Multiscale ; neural networks ; Optimization ; photosynthetically active radiation ; reflectance ; remote sensing ; spectroradiometers ; system optimization ; time series analysis</subject><ispartof>Remote sensing of environment, 2024-02, Vol.301, p.113928, Article 113928</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-588631a65d6f0e87eb9ed3fe06ca834f30c933bc5c7d13ab170b664641e261ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0034425723004807$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Guodong</creatorcontrib><creatorcontrib>Liang, Shunlin</creatorcontrib><creatorcontrib>Ma, Han</creatorcontrib><creatorcontrib>He, Tao</creatorcontrib><creatorcontrib>Yin, Gaofei</creatorcontrib><creatorcontrib>Xu, Jianglei</creatorcontrib><creatorcontrib>Liu, Xiaobang</creatorcontrib><creatorcontrib>Zhang, Yufang</creatorcontrib><title>Simultaneous estimation of five temporally regular land variables at seven spatial resolutions from seven satellite data using a multi-scale and multi-depth convolutional neural network</title><title>Remote sensing of environment</title><description>Various satellite sensors have provided a huge amount of observations of Earth's environment at variable spatial and temporal resolutions. Many global coarse-resolution land products have been generated from single-satellite data, but global temporally regular land products at fine spatial resolutions (say 10-30 m) are scarce because of infrequent observations. An ideal inversion framework can estimate multiple global continuous land variables at different spatial resolutions by combining all sources of satellite data. This paper proposes a new framework that can estimate five land variables simultaneously from the top-of-atmosphere (TOA) reflectance acquired by seven satellite sensors based on a multi-scale and multi-depth convolutional neural network (MSDCNN). This framework enables us to estimate temporally regular land variables at as fine as 10 m spatial resolution by transforming information from satellite data at coarser spatial resolutions. The estimated land variables include Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), shortwave albedo, visible albedo, and spectral reflectance. Seven sensors that acquire data at different spatial resolutions, include Visible Infrared Imaging Radiometer Suite (VIIRS) (750 m), Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m), Fengyun-3 (FY-3) Medium Resolution Spectral Imager (MERSI) (250 m), China-Brazil Earth Resources Satellite 04 (CBERS-04) Wide Field Imager (WFI) (73 m), Landsat 8 Operational Land Imager (OLI) (30 m), Gaofen-1 (GF-1) Wide-Field-of-View (16 m) and Sentinel 2 A/B Multispectral Imager (MSI) (10 m). This framework is mainly composed of four steps. First, a Shuffled Complex Evolution (SCE) optimization method is adopted to estimate these variables from VIIRS TOA reference. Second, a joint-output random forest regression (RF) method is used to link the satellite observations and the estimated values from step 1. Third, the six-type multi-resolution satellite observations are used to downscale the VIIRS TOA reflectance to six different spatial resolutions by using the MSDCNN. Finally, the downscaled six-resolution VIIRS TOA reflectance is fed into the multiple-variable RF model to estimate land variables. The framework was validated, and the results based on high-resolution reference maps from ImagineS network and time series shortwave albedo field values from Surface Radiation (SURFRAD) and Integrated Carbon Observation System (ICOS) network show that the retrieved variables had high validation accuracy, with root mean square error (RMSE) ranges of 0.361–0.489 (LAI), 0.023–0.120 (FAPAR), 0.013–0.026 (snow-free shortwave albedo), respectively. Comparison results of the retrieved multi-scale variables with the Sentinel 2 A/B (10 m), Landsat 8 (30 m), Global LAnd Surface Satellite (GLASS, 250 m, 500 m), MODIS (500 m), and VIIRS (750 m) products show that their values were close, with RMSE ranges of 0.107–0.273 (LAI), 0.015–0.027 (FAPAR), 0.003–0.007 (shortwave albedo), 0.001–0.007 (visible albedo), and 0.003–0.025 (spectral reflectance), respectively. The results of the direct validation as well as the product intercomparison show that this novel framework has the potential to be used in estimating global land variables at various spatial scales using a variety of satellite data sources. •Exploring a deep learning method for seven-resolution land surface variable estimation.•The finest resolution of estimated variable is 10 m and the temporal continuity is improved.•Estimated variables at seven resolution have consistent spatial distribution.•The estimated multi-resolution variables have high accuracy based on extensive validation.</description><subject>algorithms</subject><subject>carbon</subject><subject>environment</subject><subject>Joint-output RF</subject><subject>Landsat</subject><subject>leaf area index</subject><subject>MSDCNN</subject><subject>Multiple variables</subject><subject>Multiscale</subject><subject>neural networks</subject><subject>Optimization</subject><subject>photosynthetically active radiation</subject><subject>reflectance</subject><subject>remote sensing</subject><subject>spectroradiometers</subject><subject>system optimization</subject><subject>time series analysis</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEEpeWB-jOSza5eOLE8RUrVPEnVWLRdm1NnEnxxYmD7QT10fp2OKRsWY1GPuez5pyiuAJ-BA7y_fkYIh0rXokjgDhV6kVxANWeSt7y-mVx4FzUZV017eviTYxnzqFRLRyKp1s7Li7hRH6JjGKyIybrJ-YHNtiVWKJx9gGde2SBHhaHgTmcerZisNg5igwTi7TSxOKcreiyLnq3bJTIhuDHf8-YyDmbiPWYkC3RTg8M2fa9LaNBR2wD73tPc_rBjJ_WZ1TmTrSEvyP99uHnZfFqQBfp7fO8KO4_f7q7_lrefP_y7frjTWkqVaWyUUoKQNn0cuCkWupO1IuBuDSoRD0Ibk5CdKYxbQ8CO2h5J2Uta6BKApG4KN7t3Dn4X0tOSI82mnzJnpkW0AhQoGSdpbBLTfAxBhr0HHKe4VED11tN-qxzTXqrSe81Zc-H3UP5htVS0NFYmgz1NpBJuvf2P-4_W1Gg-Q</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhang, Guodong</creator><creator>Liang, Shunlin</creator><creator>Ma, Han</creator><creator>He, Tao</creator><creator>Yin, Gaofei</creator><creator>Xu, Jianglei</creator><creator>Liu, Xiaobang</creator><creator>Zhang, Yufang</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240201</creationdate><title>Simultaneous estimation of five temporally regular land variables at seven spatial resolutions from seven satellite data using a multi-scale and multi-depth convolutional neural network</title><author>Zhang, Guodong ; Liang, Shunlin ; Ma, Han ; He, Tao ; Yin, Gaofei ; Xu, Jianglei ; Liu, Xiaobang ; Zhang, Yufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-588631a65d6f0e87eb9ed3fe06ca834f30c933bc5c7d13ab170b664641e261ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>algorithms</topic><topic>carbon</topic><topic>environment</topic><topic>Joint-output RF</topic><topic>Landsat</topic><topic>leaf area index</topic><topic>MSDCNN</topic><topic>Multiple variables</topic><topic>Multiscale</topic><topic>neural networks</topic><topic>Optimization</topic><topic>photosynthetically active radiation</topic><topic>reflectance</topic><topic>remote sensing</topic><topic>spectroradiometers</topic><topic>system optimization</topic><topic>time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guodong</creatorcontrib><creatorcontrib>Liang, Shunlin</creatorcontrib><creatorcontrib>Ma, Han</creatorcontrib><creatorcontrib>He, Tao</creatorcontrib><creatorcontrib>Yin, Gaofei</creatorcontrib><creatorcontrib>Xu, Jianglei</creatorcontrib><creatorcontrib>Liu, Xiaobang</creatorcontrib><creatorcontrib>Zhang, Yufang</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guodong</au><au>Liang, Shunlin</au><au>Ma, Han</au><au>He, Tao</au><au>Yin, Gaofei</au><au>Xu, Jianglei</au><au>Liu, Xiaobang</au><au>Zhang, Yufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous estimation of five temporally regular land variables at seven spatial resolutions from seven satellite data using a multi-scale and multi-depth convolutional neural network</atitle><jtitle>Remote sensing of environment</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>301</volume><spage>113928</spage><pages>113928-</pages><artnum>113928</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Various satellite sensors have provided a huge amount of observations of Earth's environment at variable spatial and temporal resolutions. Many global coarse-resolution land products have been generated from single-satellite data, but global temporally regular land products at fine spatial resolutions (say 10-30 m) are scarce because of infrequent observations. An ideal inversion framework can estimate multiple global continuous land variables at different spatial resolutions by combining all sources of satellite data. This paper proposes a new framework that can estimate five land variables simultaneously from the top-of-atmosphere (TOA) reflectance acquired by seven satellite sensors based on a multi-scale and multi-depth convolutional neural network (MSDCNN). This framework enables us to estimate temporally regular land variables at as fine as 10 m spatial resolution by transforming information from satellite data at coarser spatial resolutions. The estimated land variables include Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), shortwave albedo, visible albedo, and spectral reflectance. Seven sensors that acquire data at different spatial resolutions, include Visible Infrared Imaging Radiometer Suite (VIIRS) (750 m), Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m), Fengyun-3 (FY-3) Medium Resolution Spectral Imager (MERSI) (250 m), China-Brazil Earth Resources Satellite 04 (CBERS-04) Wide Field Imager (WFI) (73 m), Landsat 8 Operational Land Imager (OLI) (30 m), Gaofen-1 (GF-1) Wide-Field-of-View (16 m) and Sentinel 2 A/B Multispectral Imager (MSI) (10 m). This framework is mainly composed of four steps. First, a Shuffled Complex Evolution (SCE) optimization method is adopted to estimate these variables from VIIRS TOA reference. Second, a joint-output random forest regression (RF) method is used to link the satellite observations and the estimated values from step 1. Third, the six-type multi-resolution satellite observations are used to downscale the VIIRS TOA reflectance to six different spatial resolutions by using the MSDCNN. Finally, the downscaled six-resolution VIIRS TOA reflectance is fed into the multiple-variable RF model to estimate land variables. The framework was validated, and the results based on high-resolution reference maps from ImagineS network and time series shortwave albedo field values from Surface Radiation (SURFRAD) and Integrated Carbon Observation System (ICOS) network show that the retrieved variables had high validation accuracy, with root mean square error (RMSE) ranges of 0.361–0.489 (LAI), 0.023–0.120 (FAPAR), 0.013–0.026 (snow-free shortwave albedo), respectively. Comparison results of the retrieved multi-scale variables with the Sentinel 2 A/B (10 m), Landsat 8 (30 m), Global LAnd Surface Satellite (GLASS, 250 m, 500 m), MODIS (500 m), and VIIRS (750 m) products show that their values were close, with RMSE ranges of 0.107–0.273 (LAI), 0.015–0.027 (FAPAR), 0.003–0.007 (shortwave albedo), 0.001–0.007 (visible albedo), and 0.003–0.025 (spectral reflectance), respectively. The results of the direct validation as well as the product intercomparison show that this novel framework has the potential to be used in estimating global land variables at various spatial scales using a variety of satellite data sources. •Exploring a deep learning method for seven-resolution land surface variable estimation.•The finest resolution of estimated variable is 10 m and the temporal continuity is improved.•Estimated variables at seven resolution have consistent spatial distribution.•The estimated multi-resolution variables have high accuracy based on extensive validation.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2023.113928</doi></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2024-02, Vol.301, p.113928, Article 113928
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_miscellaneous_3153181864
source Elsevier ScienceDirect Journals
subjects algorithms
carbon
environment
Joint-output RF
Landsat
leaf area index
MSDCNN
Multiple variables
Multiscale
neural networks
Optimization
photosynthetically active radiation
reflectance
remote sensing
spectroradiometers
system optimization
time series analysis
title Simultaneous estimation of five temporally regular land variables at seven spatial resolutions from seven satellite data using a multi-scale and multi-depth convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20estimation%20of%20five%20temporally%20regular%20land%20variables%20at%20seven%20spatial%20resolutions%20from%20seven%20satellite%20data%20using%20a%20multi-scale%20and%20multi-depth%20convolutional%20neural%20network&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Zhang,%20Guodong&rft.date=2024-02-01&rft.volume=301&rft.spage=113928&rft.pages=113928-&rft.artnum=113928&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2023.113928&rft_dat=%3Cproquest_cross%3E3153181864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153181864&rft_id=info:pmid/&rft_els_id=S0034425723004807&rfr_iscdi=true