Shale oil redistribution-induced flow regime transition in nanopores

The previous neglect of shale oil multi-component characteristics and the nanpore wall properties of real shale result in an insufficient understanding of shale oil flow mechanisms in nanopores. Meanwhile, research on the flow regimes of shale oil remains lacking. In this study, molecular dynamics s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2023-11, Vol.282, p.128553, Article 128553
Hauptverfasser: Sun, Hai, Li, Tianhao, Li, Zheng, Fan, Dongyan, Zhang, Lei, Yang, Yongfei, Zhang, Kai, Zhong, Junjie, Yao, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 128553
container_title Energy (Oxford)
container_volume 282
creator Sun, Hai
Li, Tianhao
Li, Zheng
Fan, Dongyan
Zhang, Lei
Yang, Yongfei
Zhang, Kai
Zhong, Junjie
Yao, Jun
description The previous neglect of shale oil multi-component characteristics and the nanpore wall properties of real shale result in an insufficient understanding of shale oil flow mechanisms in nanopores. Meanwhile, research on the flow regimes of shale oil remains lacking. In this study, molecular dynamics simulations are employed to investigate the flow of shale oil in hydroxylated quartz nanopores and rough kerogen nanopores. Simulation results show that the flow regime changed as the pressure gradient (∇p) increased to a critical value (∇pc). The velocity profile was parabolic when ∇p 
doi_str_mv 10.1016/j.energy.2023.128553
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153178350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544223019473</els_id><sourcerecordid>3153178350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-9722aaee6159ea440b0d56852a295ee3577e8c2bd0838f3deb8e042c19e1cd3d3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhT2ARCn8A4aMLAl-xImzIKHylCoxALPl2DflVqld7ATUf0-qMDOd4Tyk8xFyxWjBKKtutgV4iJtDwSkXBeNKSnFCFlRUNJdlyc_IeUpbSqlUTbMg92-fpocsYJ9FcJiGiO04YPA5ejdacFnXh5_J2-AOsiEan_BoZ-gzb3zYhwjpgpx2pk9w-adL8vH48L56ztevTy-ru3VuhWiGvKk5NwagYrIBU5a0pU5WSnLDGwkgZF2Dsrx1VAnVCQetAlpyyxpg1gknluR63t3H8DVCGvQOk4W-Nx7CmLRgUrBaCUmnaDlHbQwpRej0PuLOxINmVB9B6a2eQekjKD2Dmmq3cw2mG98IUSeL4CcOGMEO2gX8f-AXIAh2JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153178350</pqid></control><display><type>article</type><title>Shale oil redistribution-induced flow regime transition in nanopores</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Hai ; Li, Tianhao ; Li, Zheng ; Fan, Dongyan ; Zhang, Lei ; Yang, Yongfei ; Zhang, Kai ; Zhong, Junjie ; Yao, Jun</creator><creatorcontrib>Sun, Hai ; Li, Tianhao ; Li, Zheng ; Fan, Dongyan ; Zhang, Lei ; Yang, Yongfei ; Zhang, Kai ; Zhong, Junjie ; Yao, Jun</creatorcontrib><description>The previous neglect of shale oil multi-component characteristics and the nanpore wall properties of real shale result in an insufficient understanding of shale oil flow mechanisms in nanopores. Meanwhile, research on the flow regimes of shale oil remains lacking. In this study, molecular dynamics simulations are employed to investigate the flow of shale oil in hydroxylated quartz nanopores and rough kerogen nanopores. Simulation results show that the flow regime changed as the pressure gradient (∇p) increased to a critical value (∇pc). The velocity profile was parabolic when ∇p &lt; ∇pc, but gradually became piston-like when ∇p ≥ ∇pc. Because increasing ∇p leads the adsorbed molecules desorbing, aggregating in the pore center, and forming clusters that are not easy to shear. Increasing vertical force from pore wall causes fluid aggregation in the pore center as ∇p increases. The ∇pc in kerogen nanopores is larger than that in quartz nanopores due to the rough kerogen surface and sticky layers. Multi-component fluids have higher ∇pc than single-component fluids in quartz nanopores. However, they have the same ∇pc in kerogen nanopores due to the rough kerogen surface. This investigation can provide theoretical basis for high-efficient production of shale oil. [Display omitted] •The flow regime of multicomponent shale oil in rough nanochannels was studied by MD.•Critical pressure gradients exist for fluid flow regime transitions in nanopores.•Determined governing factors of velocity profile changing from parabola to piston.•Determined governing factors of critical pressure gradients.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2023.128553</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>energy ; Flow regime transition ; Fluid accumulation ; molecular dynamics ; Molecular dynamics simulations ; Nanopores ; oils ; Pressure gradient ; quartz ; shale ; Shale oil</subject><ispartof>Energy (Oxford), 2023-11, Vol.282, p.128553, Article 128553</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-9722aaee6159ea440b0d56852a295ee3577e8c2bd0838f3deb8e042c19e1cd3d3</citedby><cites>FETCH-LOGICAL-c339t-9722aaee6159ea440b0d56852a295ee3577e8c2bd0838f3deb8e042c19e1cd3d3</cites><orcidid>0009-0002-9101-3490 ; 0000-0001-9510-7270 ; 0000-0002-0864-4404 ; 0000-0001-9023-7578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544223019473$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sun, Hai</creatorcontrib><creatorcontrib>Li, Tianhao</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Fan, Dongyan</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yang, Yongfei</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhong, Junjie</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><title>Shale oil redistribution-induced flow regime transition in nanopores</title><title>Energy (Oxford)</title><description>The previous neglect of shale oil multi-component characteristics and the nanpore wall properties of real shale result in an insufficient understanding of shale oil flow mechanisms in nanopores. Meanwhile, research on the flow regimes of shale oil remains lacking. In this study, molecular dynamics simulations are employed to investigate the flow of shale oil in hydroxylated quartz nanopores and rough kerogen nanopores. Simulation results show that the flow regime changed as the pressure gradient (∇p) increased to a critical value (∇pc). The velocity profile was parabolic when ∇p &lt; ∇pc, but gradually became piston-like when ∇p ≥ ∇pc. Because increasing ∇p leads the adsorbed molecules desorbing, aggregating in the pore center, and forming clusters that are not easy to shear. Increasing vertical force from pore wall causes fluid aggregation in the pore center as ∇p increases. The ∇pc in kerogen nanopores is larger than that in quartz nanopores due to the rough kerogen surface and sticky layers. Multi-component fluids have higher ∇pc than single-component fluids in quartz nanopores. However, they have the same ∇pc in kerogen nanopores due to the rough kerogen surface. This investigation can provide theoretical basis for high-efficient production of shale oil. [Display omitted] •The flow regime of multicomponent shale oil in rough nanochannels was studied by MD.•Critical pressure gradients exist for fluid flow regime transitions in nanopores.•Determined governing factors of velocity profile changing from parabola to piston.•Determined governing factors of critical pressure gradients.</description><subject>energy</subject><subject>Flow regime transition</subject><subject>Fluid accumulation</subject><subject>molecular dynamics</subject><subject>Molecular dynamics simulations</subject><subject>Nanopores</subject><subject>oils</subject><subject>Pressure gradient</subject><subject>quartz</subject><subject>shale</subject><subject>Shale oil</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhT2ARCn8A4aMLAl-xImzIKHylCoxALPl2DflVqld7ATUf0-qMDOd4Tyk8xFyxWjBKKtutgV4iJtDwSkXBeNKSnFCFlRUNJdlyc_IeUpbSqlUTbMg92-fpocsYJ9FcJiGiO04YPA5ejdacFnXh5_J2-AOsiEan_BoZ-gzb3zYhwjpgpx2pk9w-adL8vH48L56ztevTy-ru3VuhWiGvKk5NwagYrIBU5a0pU5WSnLDGwkgZF2Dsrx1VAnVCQetAlpyyxpg1gknluR63t3H8DVCGvQOk4W-Nx7CmLRgUrBaCUmnaDlHbQwpRej0PuLOxINmVB9B6a2eQekjKD2Dmmq3cw2mG98IUSeL4CcOGMEO2gX8f-AXIAh2JA</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Sun, Hai</creator><creator>Li, Tianhao</creator><creator>Li, Zheng</creator><creator>Fan, Dongyan</creator><creator>Zhang, Lei</creator><creator>Yang, Yongfei</creator><creator>Zhang, Kai</creator><creator>Zhong, Junjie</creator><creator>Yao, Jun</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0002-9101-3490</orcidid><orcidid>https://orcid.org/0000-0001-9510-7270</orcidid><orcidid>https://orcid.org/0000-0002-0864-4404</orcidid><orcidid>https://orcid.org/0000-0001-9023-7578</orcidid></search><sort><creationdate>20231101</creationdate><title>Shale oil redistribution-induced flow regime transition in nanopores</title><author>Sun, Hai ; Li, Tianhao ; Li, Zheng ; Fan, Dongyan ; Zhang, Lei ; Yang, Yongfei ; Zhang, Kai ; Zhong, Junjie ; Yao, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-9722aaee6159ea440b0d56852a295ee3577e8c2bd0838f3deb8e042c19e1cd3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>energy</topic><topic>Flow regime transition</topic><topic>Fluid accumulation</topic><topic>molecular dynamics</topic><topic>Molecular dynamics simulations</topic><topic>Nanopores</topic><topic>oils</topic><topic>Pressure gradient</topic><topic>quartz</topic><topic>shale</topic><topic>Shale oil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Hai</creatorcontrib><creatorcontrib>Li, Tianhao</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Fan, Dongyan</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yang, Yongfei</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhong, Junjie</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Hai</au><au>Li, Tianhao</au><au>Li, Zheng</au><au>Fan, Dongyan</au><au>Zhang, Lei</au><au>Yang, Yongfei</au><au>Zhang, Kai</au><au>Zhong, Junjie</au><au>Yao, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shale oil redistribution-induced flow regime transition in nanopores</atitle><jtitle>Energy (Oxford)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>282</volume><spage>128553</spage><pages>128553-</pages><artnum>128553</artnum><issn>0360-5442</issn><abstract>The previous neglect of shale oil multi-component characteristics and the nanpore wall properties of real shale result in an insufficient understanding of shale oil flow mechanisms in nanopores. Meanwhile, research on the flow regimes of shale oil remains lacking. In this study, molecular dynamics simulations are employed to investigate the flow of shale oil in hydroxylated quartz nanopores and rough kerogen nanopores. Simulation results show that the flow regime changed as the pressure gradient (∇p) increased to a critical value (∇pc). The velocity profile was parabolic when ∇p &lt; ∇pc, but gradually became piston-like when ∇p ≥ ∇pc. Because increasing ∇p leads the adsorbed molecules desorbing, aggregating in the pore center, and forming clusters that are not easy to shear. Increasing vertical force from pore wall causes fluid aggregation in the pore center as ∇p increases. The ∇pc in kerogen nanopores is larger than that in quartz nanopores due to the rough kerogen surface and sticky layers. Multi-component fluids have higher ∇pc than single-component fluids in quartz nanopores. However, they have the same ∇pc in kerogen nanopores due to the rough kerogen surface. This investigation can provide theoretical basis for high-efficient production of shale oil. [Display omitted] •The flow regime of multicomponent shale oil in rough nanochannels was studied by MD.•Critical pressure gradients exist for fluid flow regime transitions in nanopores.•Determined governing factors of velocity profile changing from parabola to piston.•Determined governing factors of critical pressure gradients.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2023.128553</doi><orcidid>https://orcid.org/0009-0002-9101-3490</orcidid><orcidid>https://orcid.org/0000-0001-9510-7270</orcidid><orcidid>https://orcid.org/0000-0002-0864-4404</orcidid><orcidid>https://orcid.org/0000-0001-9023-7578</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2023-11, Vol.282, p.128553, Article 128553
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_3153178350
source Elsevier ScienceDirect Journals
subjects energy
Flow regime transition
Fluid accumulation
molecular dynamics
Molecular dynamics simulations
Nanopores
oils
Pressure gradient
quartz
shale
Shale oil
title Shale oil redistribution-induced flow regime transition in nanopores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shale%20oil%20redistribution-induced%20flow%20regime%20transition%20in%20nanopores&rft.jtitle=Energy%20(Oxford)&rft.au=Sun,%20Hai&rft.date=2023-11-01&rft.volume=282&rft.spage=128553&rft.pages=128553-&rft.artnum=128553&rft.issn=0360-5442&rft_id=info:doi/10.1016/j.energy.2023.128553&rft_dat=%3Cproquest_cross%3E3153178350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153178350&rft_id=info:pmid/&rft_els_id=S0360544223019473&rfr_iscdi=true