Artificial intelligence and machine learning as a viable solution for hip implant failure diagnosis—Review of literature and in vitro case study

The digital health industry is experiencing fast-paced research which can provide digital care programs and technologies to enhance the competence of healthcare delivery. Orthopedic literature also confirms the applicability of artificial intelligence (AI) and machine learning (ML) models to medical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2023-06, Vol.61 (6), p.1239-1255
Hauptverfasser: Ampadi Ramachandran, Remya, Chi, Sheng-Wei, Srinivasa Pai, P., Foucher, Kharma, Ozevin, Didem, Mathew, Mathew T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1255
container_issue 6
container_start_page 1239
container_title Medical & biological engineering & computing
container_volume 61
creator Ampadi Ramachandran, Remya
Chi, Sheng-Wei
Srinivasa Pai, P.
Foucher, Kharma
Ozevin, Didem
Mathew, Mathew T.
description The digital health industry is experiencing fast-paced research which can provide digital care programs and technologies to enhance the competence of healthcare delivery. Orthopedic literature also confirms the applicability of artificial intelligence (AI) and machine learning (ML) models to medical diagnosis and clinical decision-making. However, implant monitoring after primary surgery often happens with a wellness visit or when a patient complains about it. Neglecting implant design and other technical errors in this scenario, unmonitored circumstances, and lack of post-surgery monitoring may ultimately lead to the implant system’s failure and leave us with the only option of high-risk revision surgery. Preventive maintenance seems to be a good choice to identify the onset of an irreversible prosthesis failure. Considering all these aspects for hip implant monitoring, this paper explores existing studies linking ML models and intelligent systems for hip implant diagnosis. This paper explores the feasibility of an alternative continuous monitoring technique for post-surgery implant monitoring backed by an in vitro ML case study. Tribocorrosion and acoustic emission (AE) data are considered based on their efficacy in determining irreversible alteration of implant material to prevent total failures. This study also facilitates the relevance of developing an artificially intelligent implant monitoring methodology that can function with daily patient activities and how it can influence the digital orthopedic diagnosis. Graphical Abstract AI-based non-invasive hip implant monitoring system enabling point-of-care testing
doi_str_mv 10.1007/s11517-023-02779-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153177569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153177569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-921ea76e2146ad11d2ca16d6a0a344251398de7cec8a127aa513d2f56c8ed7ef3</originalsourceid><addsrcrecordid>eNp9kc9qFTEUh4Mo9lp9ARcScNPNaE4mM5lZluI_KAii63CanLlNySTXZKalO59B-oQ-ibnequDCRTiQfOc74fwYew7iFQihXxeADnQjZFuP1mMDD9gGtIJGKKUeso0AJRoBMByxJ6VcCSGhk-oxO2p7LUBAu2HfT_PiJ289Bu7jQiH4LUVLHKPjM9pLH4kHwhx93HIsHPm1x4tAvKSwLj5FPqXML_2O-3kXMC58Qh_WTNx53MZUfPnx7e4TXXu64WniwS-UcdkD-xE-Vt-SE7dYqnNZ3e1T9mjCUOjZfT1mX96--Xz2vjn_-O7D2el5Y5UYlmaUQKh7kqB6dABOWoTe9SiwVUp20I6DI23JDghSI9YbJ6eutwM5TVN7zE4O3l1OX1cqi5l9sXUDGCmtxbTQtaB1148VffkPepXWHOvvjBxAjqJXICslD5TNqZRMk9llP2O-NSDMPjFzSMzUxMyvxAzUphf36vViJven5XdEFWgPQKlPcUv57-z_aH8Cp-6kKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812906412</pqid></control><display><type>article</type><title>Artificial intelligence and machine learning as a viable solution for hip implant failure diagnosis—Review of literature and in vitro case study</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ampadi Ramachandran, Remya ; Chi, Sheng-Wei ; Srinivasa Pai, P. ; Foucher, Kharma ; Ozevin, Didem ; Mathew, Mathew T.</creator><creatorcontrib>Ampadi Ramachandran, Remya ; Chi, Sheng-Wei ; Srinivasa Pai, P. ; Foucher, Kharma ; Ozevin, Didem ; Mathew, Mathew T.</creatorcontrib><description>The digital health industry is experiencing fast-paced research which can provide digital care programs and technologies to enhance the competence of healthcare delivery. Orthopedic literature also confirms the applicability of artificial intelligence (AI) and machine learning (ML) models to medical diagnosis and clinical decision-making. However, implant monitoring after primary surgery often happens with a wellness visit or when a patient complains about it. Neglecting implant design and other technical errors in this scenario, unmonitored circumstances, and lack of post-surgery monitoring may ultimately lead to the implant system’s failure and leave us with the only option of high-risk revision surgery. Preventive maintenance seems to be a good choice to identify the onset of an irreversible prosthesis failure. Considering all these aspects for hip implant monitoring, this paper explores existing studies linking ML models and intelligent systems for hip implant diagnosis. This paper explores the feasibility of an alternative continuous monitoring technique for post-surgery implant monitoring backed by an in vitro ML case study. Tribocorrosion and acoustic emission (AE) data are considered based on their efficacy in determining irreversible alteration of implant material to prevent total failures. This study also facilitates the relevance of developing an artificially intelligent implant monitoring methodology that can function with daily patient activities and how it can influence the digital orthopedic diagnosis. Graphical Abstract AI-based non-invasive hip implant monitoring system enabling point-of-care testing</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-023-02779-1</identifier><identifier>PMID: 36701013</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic emission ; acoustics ; Artificial Intelligence ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Case studies ; Computer Applications ; Decision making ; Diagnosis ; Emission analysis ; Failure ; Hip ; Hip Prosthesis ; Human Physiology ; Humans ; Imaging ; industry ; Learning algorithms ; Literature reviews ; Machine Learning ; Medical diagnosis ; Monitoring ; Monitoring systems ; Orthopedics ; Patients ; point-of-care systems ; Preventive maintenance ; Prostheses ; Prosthesis Failure ; Radiology ; Review Article ; Revisions ; Surgery ; Telemedicine ; Transplants &amp; implants</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2023-06, Vol.61 (6), p.1239-1255</ispartof><rights>International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. International Federation for Medical and Biological Engineering.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-921ea76e2146ad11d2ca16d6a0a344251398de7cec8a127aa513d2f56c8ed7ef3</citedby><cites>FETCH-LOGICAL-c408t-921ea76e2146ad11d2ca16d6a0a344251398de7cec8a127aa513d2f56c8ed7ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-023-02779-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-023-02779-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36701013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ampadi Ramachandran, Remya</creatorcontrib><creatorcontrib>Chi, Sheng-Wei</creatorcontrib><creatorcontrib>Srinivasa Pai, P.</creatorcontrib><creatorcontrib>Foucher, Kharma</creatorcontrib><creatorcontrib>Ozevin, Didem</creatorcontrib><creatorcontrib>Mathew, Mathew T.</creatorcontrib><title>Artificial intelligence and machine learning as a viable solution for hip implant failure diagnosis—Review of literature and in vitro case study</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>The digital health industry is experiencing fast-paced research which can provide digital care programs and technologies to enhance the competence of healthcare delivery. Orthopedic literature also confirms the applicability of artificial intelligence (AI) and machine learning (ML) models to medical diagnosis and clinical decision-making. However, implant monitoring after primary surgery often happens with a wellness visit or when a patient complains about it. Neglecting implant design and other technical errors in this scenario, unmonitored circumstances, and lack of post-surgery monitoring may ultimately lead to the implant system’s failure and leave us with the only option of high-risk revision surgery. Preventive maintenance seems to be a good choice to identify the onset of an irreversible prosthesis failure. Considering all these aspects for hip implant monitoring, this paper explores existing studies linking ML models and intelligent systems for hip implant diagnosis. This paper explores the feasibility of an alternative continuous monitoring technique for post-surgery implant monitoring backed by an in vitro ML case study. Tribocorrosion and acoustic emission (AE) data are considered based on their efficacy in determining irreversible alteration of implant material to prevent total failures. This study also facilitates the relevance of developing an artificially intelligent implant monitoring methodology that can function with daily patient activities and how it can influence the digital orthopedic diagnosis. Graphical Abstract AI-based non-invasive hip implant monitoring system enabling point-of-care testing</description><subject>Acoustic emission</subject><subject>acoustics</subject><subject>Artificial Intelligence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Case studies</subject><subject>Computer Applications</subject><subject>Decision making</subject><subject>Diagnosis</subject><subject>Emission analysis</subject><subject>Failure</subject><subject>Hip</subject><subject>Hip Prosthesis</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Imaging</subject><subject>industry</subject><subject>Learning algorithms</subject><subject>Literature reviews</subject><subject>Machine Learning</subject><subject>Medical diagnosis</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Orthopedics</subject><subject>Patients</subject><subject>point-of-care systems</subject><subject>Preventive maintenance</subject><subject>Prostheses</subject><subject>Prosthesis Failure</subject><subject>Radiology</subject><subject>Review Article</subject><subject>Revisions</subject><subject>Surgery</subject><subject>Telemedicine</subject><subject>Transplants &amp; implants</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc9qFTEUh4Mo9lp9ARcScNPNaE4mM5lZluI_KAii63CanLlNySTXZKalO59B-oQ-ibnequDCRTiQfOc74fwYew7iFQihXxeADnQjZFuP1mMDD9gGtIJGKKUeso0AJRoBMByxJ6VcCSGhk-oxO2p7LUBAu2HfT_PiJ289Bu7jQiH4LUVLHKPjM9pLH4kHwhx93HIsHPm1x4tAvKSwLj5FPqXML_2O-3kXMC58Qh_WTNx53MZUfPnx7e4TXXu64WniwS-UcdkD-xE-Vt-SE7dYqnNZ3e1T9mjCUOjZfT1mX96--Xz2vjn_-O7D2el5Y5UYlmaUQKh7kqB6dABOWoTe9SiwVUp20I6DI23JDghSI9YbJ6eutwM5TVN7zE4O3l1OX1cqi5l9sXUDGCmtxbTQtaB1148VffkPepXWHOvvjBxAjqJXICslD5TNqZRMk9llP2O-NSDMPjFzSMzUxMyvxAzUphf36vViJven5XdEFWgPQKlPcUv57-z_aH8Cp-6kKA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Ampadi Ramachandran, Remya</creator><creator>Chi, Sheng-Wei</creator><creator>Srinivasa Pai, P.</creator><creator>Foucher, Kharma</creator><creator>Ozevin, Didem</creator><creator>Mathew, Mathew T.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230601</creationdate><title>Artificial intelligence and machine learning as a viable solution for hip implant failure diagnosis—Review of literature and in vitro case study</title><author>Ampadi Ramachandran, Remya ; Chi, Sheng-Wei ; Srinivasa Pai, P. ; Foucher, Kharma ; Ozevin, Didem ; Mathew, Mathew T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-921ea76e2146ad11d2ca16d6a0a344251398de7cec8a127aa513d2f56c8ed7ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic emission</topic><topic>acoustics</topic><topic>Artificial Intelligence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Case studies</topic><topic>Computer Applications</topic><topic>Decision making</topic><topic>Diagnosis</topic><topic>Emission analysis</topic><topic>Failure</topic><topic>Hip</topic><topic>Hip Prosthesis</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Imaging</topic><topic>industry</topic><topic>Learning algorithms</topic><topic>Literature reviews</topic><topic>Machine Learning</topic><topic>Medical diagnosis</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Orthopedics</topic><topic>Patients</topic><topic>point-of-care systems</topic><topic>Preventive maintenance</topic><topic>Prostheses</topic><topic>Prosthesis Failure</topic><topic>Radiology</topic><topic>Review Article</topic><topic>Revisions</topic><topic>Surgery</topic><topic>Telemedicine</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ampadi Ramachandran, Remya</creatorcontrib><creatorcontrib>Chi, Sheng-Wei</creatorcontrib><creatorcontrib>Srinivasa Pai, P.</creatorcontrib><creatorcontrib>Foucher, Kharma</creatorcontrib><creatorcontrib>Ozevin, Didem</creatorcontrib><creatorcontrib>Mathew, Mathew T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ampadi Ramachandran, Remya</au><au>Chi, Sheng-Wei</au><au>Srinivasa Pai, P.</au><au>Foucher, Kharma</au><au>Ozevin, Didem</au><au>Mathew, Mathew T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence and machine learning as a viable solution for hip implant failure diagnosis—Review of literature and in vitro case study</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>61</volume><issue>6</issue><spage>1239</spage><epage>1255</epage><pages>1239-1255</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>The digital health industry is experiencing fast-paced research which can provide digital care programs and technologies to enhance the competence of healthcare delivery. Orthopedic literature also confirms the applicability of artificial intelligence (AI) and machine learning (ML) models to medical diagnosis and clinical decision-making. However, implant monitoring after primary surgery often happens with a wellness visit or when a patient complains about it. Neglecting implant design and other technical errors in this scenario, unmonitored circumstances, and lack of post-surgery monitoring may ultimately lead to the implant system’s failure and leave us with the only option of high-risk revision surgery. Preventive maintenance seems to be a good choice to identify the onset of an irreversible prosthesis failure. Considering all these aspects for hip implant monitoring, this paper explores existing studies linking ML models and intelligent systems for hip implant diagnosis. This paper explores the feasibility of an alternative continuous monitoring technique for post-surgery implant monitoring backed by an in vitro ML case study. Tribocorrosion and acoustic emission (AE) data are considered based on their efficacy in determining irreversible alteration of implant material to prevent total failures. This study also facilitates the relevance of developing an artificially intelligent implant monitoring methodology that can function with daily patient activities and how it can influence the digital orthopedic diagnosis. Graphical Abstract AI-based non-invasive hip implant monitoring system enabling point-of-care testing</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36701013</pmid><doi>10.1007/s11517-023-02779-1</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2023-06, Vol.61 (6), p.1239-1255
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_3153177569
source MEDLINE; Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete
subjects Acoustic emission
acoustics
Artificial Intelligence
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Case studies
Computer Applications
Decision making
Diagnosis
Emission analysis
Failure
Hip
Hip Prosthesis
Human Physiology
Humans
Imaging
industry
Learning algorithms
Literature reviews
Machine Learning
Medical diagnosis
Monitoring
Monitoring systems
Orthopedics
Patients
point-of-care systems
Preventive maintenance
Prostheses
Prosthesis Failure
Radiology
Review Article
Revisions
Surgery
Telemedicine
Transplants & implants
title Artificial intelligence and machine learning as a viable solution for hip implant failure diagnosis—Review of literature and in vitro case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20and%20machine%20learning%20as%20a%20viable%20solution%20for%20hip%20implant%20failure%20diagnosis%E2%80%94Review%20of%20literature%20and%20in%20vitro%20case%20study&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Ampadi%20Ramachandran,%20Remya&rft.date=2023-06-01&rft.volume=61&rft.issue=6&rft.spage=1239&rft.epage=1255&rft.pages=1239-1255&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-023-02779-1&rft_dat=%3Cproquest_cross%3E3153177569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812906412&rft_id=info:pmid/36701013&rfr_iscdi=true