Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb

The temperature-dependent hardness of additively-manufactured near-eutectic Ni–Nb was investigated. This alloy was found to have solidified into a two-phase nanoscale microstructure with peak hardness of H  ≅ 14–17 GPa at temperatures up to 400 °C, above which irreversible softening was observed des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2023-06, Vol.58 (23), p.9723-9736
Hauptverfasser: Jones, Morgan R., Bobbitt, N. Scott, DelRio, Frank W., Wilson, Mark A., Howard, Hannah C., Endsley, Melina A., Pegues, Jonathan W., Lu, Ping, Kustas, Andrew B., Beyerlein, Irene J., Chandross, Michael, Argibay, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9736
container_issue 23
container_start_page 9723
container_title Journal of materials science
container_volume 58
creator Jones, Morgan R.
Bobbitt, N. Scott
DelRio, Frank W.
Wilson, Mark A.
Howard, Hannah C.
Endsley, Melina A.
Pegues, Jonathan W.
Lu, Ping
Kustas, Andrew B.
Beyerlein, Irene J.
Chandross, Michael
Argibay, Nicolas
description The temperature-dependent hardness of additively-manufactured near-eutectic Ni–Nb was investigated. This alloy was found to have solidified into a two-phase nanoscale microstructure with peak hardness of H  ≅ 14–17 GPa at temperatures up to 400 °C, above which irreversible softening was observed despite retention of significant strength compared to traditionally-synthesized Ni-based superalloys. Experiments and molecular-dynamics simulations show that deformation for single-phase nanocrystalline volumes was confined to intragranular slip-band formation in δ -Ni 3 Nb and to intergranular grain-boundary sliding in μ -Ni 6 Nb 7 . However, microscopy in the nanostructured two-phase regions after severe plastic deformation indicated that phase boundaries acted as nucleation sites for dislocations, promoting twinning-induced plasticity (TWIP) in the μ -Ni 6 Nb 7 grains. This work highlights (1) that additive manufacturing techniques enable formation of unique microstructures that exhibit superior mechanical properties, and (2) that multi-phase intermetallic compounds provide a route to mitigate brittle fracture though the promotion of twinning-induced plasticity. High strength and the absence of interface decohesion (cracking) suggests that multi-phase intermetallic systems may be a viable route for design of new printable superalloys. These results suggest that additive manufacturing methods and rapid solidification via non-equilibrium pathways may enable a pathway for achieving high combined strength and ductility.
doi_str_mv 10.1007/s10853-023-08636-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153176835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752835139</galeid><sourcerecordid>A752835139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f8e1bf4d9ccfa208d65a66ba12a5cdbb8166fcd7d1440538c22854c5bb0a33f23</originalsourceid><addsrcrecordid>eNp9kc1qVDEYhoNYcGy9AVcBN3WRmp-TnMyylKqFUruouAw5yZeZlDM5Y5IzMjvvwTv0SoweQXBRQgiE53n5-F6EXjN6wSjt3xVGtRSE8na1EoroZ2jFZC9Ip6l4jlaUck54p9gL9LKUR0qp7DlbocP1IXpIDvAUcP0WU4ppQ2LyswOP96MtNbpYj_j84cvN_Vtsk8fzWLPdxs0Wb232CUrBMWHrfazxAOOR7Gyag3V1zi0jgc0E5gquJeG7-PP7j7vhDJ0EOxZ49fc9RZ_fXz9cfSS3nz7cXF3eEifWrJKggQ2h82vnguVUeyWtUoNl3Ernh0EzpYLzvWddR6XQjnMtOyeHgVohAhen6HzJ3efp6wylml0sDsbRJpjmYgSTgvVKC9nQN_-hj9OcU5vOcM2l1LTvRKMuFmpjRzAxhantwrXjYRfdlCDE9n_ZS94ymVg3gS-Cy1MpGYLZ57iz-WgYNb-7M0t3pnVn_nRndJPEIpUGpw3kf7M8Yf0CEEOeDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825580743</pqid></control><display><type>article</type><title>Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jones, Morgan R. ; Bobbitt, N. Scott ; DelRio, Frank W. ; Wilson, Mark A. ; Howard, Hannah C. ; Endsley, Melina A. ; Pegues, Jonathan W. ; Lu, Ping ; Kustas, Andrew B. ; Beyerlein, Irene J. ; Chandross, Michael ; Argibay, Nicolas</creator><creatorcontrib>Jones, Morgan R. ; Bobbitt, N. Scott ; DelRio, Frank W. ; Wilson, Mark A. ; Howard, Hannah C. ; Endsley, Melina A. ; Pegues, Jonathan W. ; Lu, Ping ; Kustas, Andrew B. ; Beyerlein, Irene J. ; Chandross, Michael ; Argibay, Nicolas</creatorcontrib><description>The temperature-dependent hardness of additively-manufactured near-eutectic Ni–Nb was investigated. This alloy was found to have solidified into a two-phase nanoscale microstructure with peak hardness of H  ≅ 14–17 GPa at temperatures up to 400 °C, above which irreversible softening was observed despite retention of significant strength compared to traditionally-synthesized Ni-based superalloys. Experiments and molecular-dynamics simulations show that deformation for single-phase nanocrystalline volumes was confined to intragranular slip-band formation in δ -Ni 3 Nb and to intergranular grain-boundary sliding in μ -Ni 6 Nb 7 . However, microscopy in the nanostructured two-phase regions after severe plastic deformation indicated that phase boundaries acted as nucleation sites for dislocations, promoting twinning-induced plasticity (TWIP) in the μ -Ni 6 Nb 7 grains. This work highlights (1) that additive manufacturing techniques enable formation of unique microstructures that exhibit superior mechanical properties, and (2) that multi-phase intermetallic compounds provide a route to mitigate brittle fracture though the promotion of twinning-induced plasticity. High strength and the absence of interface decohesion (cracking) suggests that multi-phase intermetallic systems may be a viable route for design of new printable superalloys. These results suggest that additive manufacturing methods and rapid solidification via non-equilibrium pathways may enable a pathway for achieving high combined strength and ductility.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08636-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>3D printing ; Additive manufacturing ; alloys ; brittleness ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Classical Mechanics ; Comparative analysis ; Crystallography and Scattering Methods ; Eutectic temperature ; Grain boundary sliding ; Hardness ; Heat resistant alloys ; Intermetallic compounds ; Manufacturing ; Materials Science ; Mechanical properties ; Mechanical twinning ; Metals &amp; Corrosion ; microscopy ; Microstructure ; Molecular dynamics ; Multiphase ; nanocrystals ; Nickel base alloys ; Niobium ; Nucleation ; Plastic deformation ; Plastic properties ; plasticity ; Polymer Sciences ; Production methods ; Rapid solidification ; Simulation methods ; Solid Mechanics ; solidification ; Superalloys ; Temperature dependence ; Twinning (Crystallography)</subject><ispartof>Journal of materials science, 2023-06, Vol.58 (23), p.9723-9736</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f8e1bf4d9ccfa208d65a66ba12a5cdbb8166fcd7d1440538c22854c5bb0a33f23</citedby><cites>FETCH-LOGICAL-c391t-f8e1bf4d9ccfa208d65a66ba12a5cdbb8166fcd7d1440538c22854c5bb0a33f23</cites><orcidid>0000-0002-6473-7568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-023-08636-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-023-08636-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Bobbitt, N. Scott</creatorcontrib><creatorcontrib>DelRio, Frank W.</creatorcontrib><creatorcontrib>Wilson, Mark A.</creatorcontrib><creatorcontrib>Howard, Hannah C.</creatorcontrib><creatorcontrib>Endsley, Melina A.</creatorcontrib><creatorcontrib>Pegues, Jonathan W.</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Kustas, Andrew B.</creatorcontrib><creatorcontrib>Beyerlein, Irene J.</creatorcontrib><creatorcontrib>Chandross, Michael</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><title>Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The temperature-dependent hardness of additively-manufactured near-eutectic Ni–Nb was investigated. This alloy was found to have solidified into a two-phase nanoscale microstructure with peak hardness of H  ≅ 14–17 GPa at temperatures up to 400 °C, above which irreversible softening was observed despite retention of significant strength compared to traditionally-synthesized Ni-based superalloys. Experiments and molecular-dynamics simulations show that deformation for single-phase nanocrystalline volumes was confined to intragranular slip-band formation in δ -Ni 3 Nb and to intergranular grain-boundary sliding in μ -Ni 6 Nb 7 . However, microscopy in the nanostructured two-phase regions after severe plastic deformation indicated that phase boundaries acted as nucleation sites for dislocations, promoting twinning-induced plasticity (TWIP) in the μ -Ni 6 Nb 7 grains. This work highlights (1) that additive manufacturing techniques enable formation of unique microstructures that exhibit superior mechanical properties, and (2) that multi-phase intermetallic compounds provide a route to mitigate brittle fracture though the promotion of twinning-induced plasticity. High strength and the absence of interface decohesion (cracking) suggests that multi-phase intermetallic systems may be a viable route for design of new printable superalloys. These results suggest that additive manufacturing methods and rapid solidification via non-equilibrium pathways may enable a pathway for achieving high combined strength and ductility.</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>alloys</subject><subject>brittleness</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Comparative analysis</subject><subject>Crystallography and Scattering Methods</subject><subject>Eutectic temperature</subject><subject>Grain boundary sliding</subject><subject>Hardness</subject><subject>Heat resistant alloys</subject><subject>Intermetallic compounds</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mechanical twinning</subject><subject>Metals &amp; Corrosion</subject><subject>microscopy</subject><subject>Microstructure</subject><subject>Molecular dynamics</subject><subject>Multiphase</subject><subject>nanocrystals</subject><subject>Nickel base alloys</subject><subject>Niobium</subject><subject>Nucleation</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><subject>plasticity</subject><subject>Polymer Sciences</subject><subject>Production methods</subject><subject>Rapid solidification</subject><subject>Simulation methods</subject><subject>Solid Mechanics</subject><subject>solidification</subject><subject>Superalloys</subject><subject>Temperature dependence</subject><subject>Twinning (Crystallography)</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1qVDEYhoNYcGy9AVcBN3WRmp-TnMyylKqFUruouAw5yZeZlDM5Y5IzMjvvwTv0SoweQXBRQgiE53n5-F6EXjN6wSjt3xVGtRSE8na1EoroZ2jFZC9Ip6l4jlaUck54p9gL9LKUR0qp7DlbocP1IXpIDvAUcP0WU4ppQ2LyswOP96MtNbpYj_j84cvN_Vtsk8fzWLPdxs0Wb232CUrBMWHrfazxAOOR7Gyag3V1zi0jgc0E5gquJeG7-PP7j7vhDJ0EOxZ49fc9RZ_fXz9cfSS3nz7cXF3eEifWrJKggQ2h82vnguVUeyWtUoNl3Ernh0EzpYLzvWddR6XQjnMtOyeHgVohAhen6HzJ3efp6wylml0sDsbRJpjmYgSTgvVKC9nQN_-hj9OcU5vOcM2l1LTvRKMuFmpjRzAxhantwrXjYRfdlCDE9n_ZS94ymVg3gS-Cy1MpGYLZ57iz-WgYNb-7M0t3pnVn_nRndJPEIpUGpw3kf7M8Yf0CEEOeDA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Jones, Morgan R.</creator><creator>Bobbitt, N. Scott</creator><creator>DelRio, Frank W.</creator><creator>Wilson, Mark A.</creator><creator>Howard, Hannah C.</creator><creator>Endsley, Melina A.</creator><creator>Pegues, Jonathan W.</creator><creator>Lu, Ping</creator><creator>Kustas, Andrew B.</creator><creator>Beyerlein, Irene J.</creator><creator>Chandross, Michael</creator><creator>Argibay, Nicolas</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6473-7568</orcidid></search><sort><creationdate>20230601</creationdate><title>Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb</title><author>Jones, Morgan R. ; Bobbitt, N. Scott ; DelRio, Frank W. ; Wilson, Mark A. ; Howard, Hannah C. ; Endsley, Melina A. ; Pegues, Jonathan W. ; Lu, Ping ; Kustas, Andrew B. ; Beyerlein, Irene J. ; Chandross, Michael ; Argibay, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f8e1bf4d9ccfa208d65a66ba12a5cdbb8166fcd7d1440538c22854c5bb0a33f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>alloys</topic><topic>brittleness</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Comparative analysis</topic><topic>Crystallography and Scattering Methods</topic><topic>Eutectic temperature</topic><topic>Grain boundary sliding</topic><topic>Hardness</topic><topic>Heat resistant alloys</topic><topic>Intermetallic compounds</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mechanical twinning</topic><topic>Metals &amp; Corrosion</topic><topic>microscopy</topic><topic>Microstructure</topic><topic>Molecular dynamics</topic><topic>Multiphase</topic><topic>nanocrystals</topic><topic>Nickel base alloys</topic><topic>Niobium</topic><topic>Nucleation</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><topic>plasticity</topic><topic>Polymer Sciences</topic><topic>Production methods</topic><topic>Rapid solidification</topic><topic>Simulation methods</topic><topic>Solid Mechanics</topic><topic>solidification</topic><topic>Superalloys</topic><topic>Temperature dependence</topic><topic>Twinning (Crystallography)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Bobbitt, N. Scott</creatorcontrib><creatorcontrib>DelRio, Frank W.</creatorcontrib><creatorcontrib>Wilson, Mark A.</creatorcontrib><creatorcontrib>Howard, Hannah C.</creatorcontrib><creatorcontrib>Endsley, Melina A.</creatorcontrib><creatorcontrib>Pegues, Jonathan W.</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Kustas, Andrew B.</creatorcontrib><creatorcontrib>Beyerlein, Irene J.</creatorcontrib><creatorcontrib>Chandross, Michael</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Morgan R.</au><au>Bobbitt, N. Scott</au><au>DelRio, Frank W.</au><au>Wilson, Mark A.</au><au>Howard, Hannah C.</au><au>Endsley, Melina A.</au><au>Pegues, Jonathan W.</au><au>Lu, Ping</au><au>Kustas, Andrew B.</au><au>Beyerlein, Irene J.</au><au>Chandross, Michael</au><au>Argibay, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>58</volume><issue>23</issue><spage>9723</spage><epage>9736</epage><pages>9723-9736</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The temperature-dependent hardness of additively-manufactured near-eutectic Ni–Nb was investigated. This alloy was found to have solidified into a two-phase nanoscale microstructure with peak hardness of H  ≅ 14–17 GPa at temperatures up to 400 °C, above which irreversible softening was observed despite retention of significant strength compared to traditionally-synthesized Ni-based superalloys. Experiments and molecular-dynamics simulations show that deformation for single-phase nanocrystalline volumes was confined to intragranular slip-band formation in δ -Ni 3 Nb and to intergranular grain-boundary sliding in μ -Ni 6 Nb 7 . However, microscopy in the nanostructured two-phase regions after severe plastic deformation indicated that phase boundaries acted as nucleation sites for dislocations, promoting twinning-induced plasticity (TWIP) in the μ -Ni 6 Nb 7 grains. This work highlights (1) that additive manufacturing techniques enable formation of unique microstructures that exhibit superior mechanical properties, and (2) that multi-phase intermetallic compounds provide a route to mitigate brittle fracture though the promotion of twinning-induced plasticity. High strength and the absence of interface decohesion (cracking) suggests that multi-phase intermetallic systems may be a viable route for design of new printable superalloys. These results suggest that additive manufacturing methods and rapid solidification via non-equilibrium pathways may enable a pathway for achieving high combined strength and ductility.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08636-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6473-7568</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2023-06, Vol.58 (23), p.9723-9736
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_3153176835
source SpringerLink Journals - AutoHoldings
subjects 3D printing
Additive manufacturing
alloys
brittleness
Characterization and Evaluation of Materials
Chemical synthesis
Chemistry and Materials Science
Classical Mechanics
Comparative analysis
Crystallography and Scattering Methods
Eutectic temperature
Grain boundary sliding
Hardness
Heat resistant alloys
Intermetallic compounds
Manufacturing
Materials Science
Mechanical properties
Mechanical twinning
Metals & Corrosion
microscopy
Microstructure
Molecular dynamics
Multiphase
nanocrystals
Nickel base alloys
Niobium
Nucleation
Plastic deformation
Plastic properties
plasticity
Polymer Sciences
Production methods
Rapid solidification
Simulation methods
Solid Mechanics
solidification
Superalloys
Temperature dependence
Twinning (Crystallography)
title Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20twinning-induced%20plasticity%20(TWIP)%20and%20ultrahigh%20hardness%20in%20additively-manufactured%20near-eutectic%20Ni%E2%80%93Nb&rft.jtitle=Journal%20of%20materials%20science&rft.au=Jones,%20Morgan%20R.&rft.date=2023-06-01&rft.volume=58&rft.issue=23&rft.spage=9723&rft.epage=9736&rft.pages=9723-9736&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08636-8&rft_dat=%3Cgale_proqu%3EA752835139%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825580743&rft_id=info:pmid/&rft_galeid=A752835139&rfr_iscdi=true