Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb
The temperature-dependent hardness of additively-manufactured near-eutectic Ni–Nb was investigated. This alloy was found to have solidified into a two-phase nanoscale microstructure with peak hardness of H ≅ 14–17 GPa at temperatures up to 400 °C, above which irreversible softening was observed des...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2023-06, Vol.58 (23), p.9723-9736 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9736 |
---|---|
container_issue | 23 |
container_start_page | 9723 |
container_title | Journal of materials science |
container_volume | 58 |
creator | Jones, Morgan R. Bobbitt, N. Scott DelRio, Frank W. Wilson, Mark A. Howard, Hannah C. Endsley, Melina A. Pegues, Jonathan W. Lu, Ping Kustas, Andrew B. Beyerlein, Irene J. Chandross, Michael Argibay, Nicolas |
description | The temperature-dependent hardness of additively-manufactured near-eutectic Ni–Nb was investigated. This alloy was found to have solidified into a two-phase nanoscale microstructure with peak hardness of
H
≅ 14–17 GPa at temperatures up to 400 °C, above which irreversible softening was observed despite retention of significant strength compared to traditionally-synthesized Ni-based superalloys. Experiments and molecular-dynamics simulations show that deformation for single-phase nanocrystalline volumes was confined to intragranular slip-band formation in
δ
-Ni
3
Nb and to intergranular grain-boundary sliding in
μ
-Ni
6
Nb
7
. However, microscopy in the nanostructured two-phase regions after severe plastic deformation indicated that phase boundaries acted as nucleation sites for dislocations, promoting twinning-induced plasticity (TWIP) in the
μ
-Ni
6
Nb
7
grains. This work highlights (1) that additive manufacturing techniques enable formation of unique microstructures that exhibit superior mechanical properties, and (2) that multi-phase intermetallic compounds provide a route to mitigate brittle fracture though the promotion of twinning-induced plasticity. High strength and the absence of interface decohesion (cracking) suggests that multi-phase intermetallic systems may be a viable route for design of new printable superalloys. These results suggest that additive manufacturing methods and rapid solidification via non-equilibrium pathways may enable a pathway for achieving high combined strength and ductility. |
doi_str_mv | 10.1007/s10853-023-08636-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153176835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752835139</galeid><sourcerecordid>A752835139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f8e1bf4d9ccfa208d65a66ba12a5cdbb8166fcd7d1440538c22854c5bb0a33f23</originalsourceid><addsrcrecordid>eNp9kc1qVDEYhoNYcGy9AVcBN3WRmp-TnMyylKqFUruouAw5yZeZlDM5Y5IzMjvvwTv0SoweQXBRQgiE53n5-F6EXjN6wSjt3xVGtRSE8na1EoroZ2jFZC9Ip6l4jlaUck54p9gL9LKUR0qp7DlbocP1IXpIDvAUcP0WU4ppQ2LyswOP96MtNbpYj_j84cvN_Vtsk8fzWLPdxs0Wb232CUrBMWHrfazxAOOR7Gyag3V1zi0jgc0E5gquJeG7-PP7j7vhDJ0EOxZ49fc9RZ_fXz9cfSS3nz7cXF3eEifWrJKggQ2h82vnguVUeyWtUoNl3Ernh0EzpYLzvWddR6XQjnMtOyeHgVohAhen6HzJ3efp6wylml0sDsbRJpjmYgSTgvVKC9nQN_-hj9OcU5vOcM2l1LTvRKMuFmpjRzAxhantwrXjYRfdlCDE9n_ZS94ymVg3gS-Cy1MpGYLZ57iz-WgYNb-7M0t3pnVn_nRndJPEIpUGpw3kf7M8Yf0CEEOeDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825580743</pqid></control><display><type>article</type><title>Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jones, Morgan R. ; Bobbitt, N. Scott ; DelRio, Frank W. ; Wilson, Mark A. ; Howard, Hannah C. ; Endsley, Melina A. ; Pegues, Jonathan W. ; Lu, Ping ; Kustas, Andrew B. ; Beyerlein, Irene J. ; Chandross, Michael ; Argibay, Nicolas</creator><creatorcontrib>Jones, Morgan R. ; Bobbitt, N. Scott ; DelRio, Frank W. ; Wilson, Mark A. ; Howard, Hannah C. ; Endsley, Melina A. ; Pegues, Jonathan W. ; Lu, Ping ; Kustas, Andrew B. ; Beyerlein, Irene J. ; Chandross, Michael ; Argibay, Nicolas</creatorcontrib><description>The temperature-dependent hardness of additively-manufactured near-eutectic Ni–Nb was investigated. This alloy was found to have solidified into a two-phase nanoscale microstructure with peak hardness of
H
≅ 14–17 GPa at temperatures up to 400 °C, above which irreversible softening was observed despite retention of significant strength compared to traditionally-synthesized Ni-based superalloys. Experiments and molecular-dynamics simulations show that deformation for single-phase nanocrystalline volumes was confined to intragranular slip-band formation in
δ
-Ni
3
Nb and to intergranular grain-boundary sliding in
μ
-Ni
6
Nb
7
. However, microscopy in the nanostructured two-phase regions after severe plastic deformation indicated that phase boundaries acted as nucleation sites for dislocations, promoting twinning-induced plasticity (TWIP) in the
μ
-Ni
6
Nb
7
grains. This work highlights (1) that additive manufacturing techniques enable formation of unique microstructures that exhibit superior mechanical properties, and (2) that multi-phase intermetallic compounds provide a route to mitigate brittle fracture though the promotion of twinning-induced plasticity. High strength and the absence of interface decohesion (cracking) suggests that multi-phase intermetallic systems may be a viable route for design of new printable superalloys. These results suggest that additive manufacturing methods and rapid solidification via non-equilibrium pathways may enable a pathway for achieving high combined strength and ductility.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08636-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>3D printing ; Additive manufacturing ; alloys ; brittleness ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Classical Mechanics ; Comparative analysis ; Crystallography and Scattering Methods ; Eutectic temperature ; Grain boundary sliding ; Hardness ; Heat resistant alloys ; Intermetallic compounds ; Manufacturing ; Materials Science ; Mechanical properties ; Mechanical twinning ; Metals & Corrosion ; microscopy ; Microstructure ; Molecular dynamics ; Multiphase ; nanocrystals ; Nickel base alloys ; Niobium ; Nucleation ; Plastic deformation ; Plastic properties ; plasticity ; Polymer Sciences ; Production methods ; Rapid solidification ; Simulation methods ; Solid Mechanics ; solidification ; Superalloys ; Temperature dependence ; Twinning (Crystallography)</subject><ispartof>Journal of materials science, 2023-06, Vol.58 (23), p.9723-9736</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f8e1bf4d9ccfa208d65a66ba12a5cdbb8166fcd7d1440538c22854c5bb0a33f23</citedby><cites>FETCH-LOGICAL-c391t-f8e1bf4d9ccfa208d65a66ba12a5cdbb8166fcd7d1440538c22854c5bb0a33f23</cites><orcidid>0000-0002-6473-7568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-023-08636-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-023-08636-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Bobbitt, N. Scott</creatorcontrib><creatorcontrib>DelRio, Frank W.</creatorcontrib><creatorcontrib>Wilson, Mark A.</creatorcontrib><creatorcontrib>Howard, Hannah C.</creatorcontrib><creatorcontrib>Endsley, Melina A.</creatorcontrib><creatorcontrib>Pegues, Jonathan W.</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Kustas, Andrew B.</creatorcontrib><creatorcontrib>Beyerlein, Irene J.</creatorcontrib><creatorcontrib>Chandross, Michael</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><title>Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The temperature-dependent hardness of additively-manufactured near-eutectic Ni–Nb was investigated. This alloy was found to have solidified into a two-phase nanoscale microstructure with peak hardness of
H
≅ 14–17 GPa at temperatures up to 400 °C, above which irreversible softening was observed despite retention of significant strength compared to traditionally-synthesized Ni-based superalloys. Experiments and molecular-dynamics simulations show that deformation for single-phase nanocrystalline volumes was confined to intragranular slip-band formation in
δ
-Ni
3
Nb and to intergranular grain-boundary sliding in
μ
-Ni
6
Nb
7
. However, microscopy in the nanostructured two-phase regions after severe plastic deformation indicated that phase boundaries acted as nucleation sites for dislocations, promoting twinning-induced plasticity (TWIP) in the
μ
-Ni
6
Nb
7
grains. This work highlights (1) that additive manufacturing techniques enable formation of unique microstructures that exhibit superior mechanical properties, and (2) that multi-phase intermetallic compounds provide a route to mitigate brittle fracture though the promotion of twinning-induced plasticity. High strength and the absence of interface decohesion (cracking) suggests that multi-phase intermetallic systems may be a viable route for design of new printable superalloys. These results suggest that additive manufacturing methods and rapid solidification via non-equilibrium pathways may enable a pathway for achieving high combined strength and ductility.</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>alloys</subject><subject>brittleness</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Comparative analysis</subject><subject>Crystallography and Scattering Methods</subject><subject>Eutectic temperature</subject><subject>Grain boundary sliding</subject><subject>Hardness</subject><subject>Heat resistant alloys</subject><subject>Intermetallic compounds</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mechanical twinning</subject><subject>Metals & Corrosion</subject><subject>microscopy</subject><subject>Microstructure</subject><subject>Molecular dynamics</subject><subject>Multiphase</subject><subject>nanocrystals</subject><subject>Nickel base alloys</subject><subject>Niobium</subject><subject>Nucleation</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><subject>plasticity</subject><subject>Polymer Sciences</subject><subject>Production methods</subject><subject>Rapid solidification</subject><subject>Simulation methods</subject><subject>Solid Mechanics</subject><subject>solidification</subject><subject>Superalloys</subject><subject>Temperature dependence</subject><subject>Twinning (Crystallography)</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1qVDEYhoNYcGy9AVcBN3WRmp-TnMyylKqFUruouAw5yZeZlDM5Y5IzMjvvwTv0SoweQXBRQgiE53n5-F6EXjN6wSjt3xVGtRSE8na1EoroZ2jFZC9Ip6l4jlaUck54p9gL9LKUR0qp7DlbocP1IXpIDvAUcP0WU4ppQ2LyswOP96MtNbpYj_j84cvN_Vtsk8fzWLPdxs0Wb232CUrBMWHrfazxAOOR7Gyag3V1zi0jgc0E5gquJeG7-PP7j7vhDJ0EOxZ49fc9RZ_fXz9cfSS3nz7cXF3eEifWrJKggQ2h82vnguVUeyWtUoNl3Ernh0EzpYLzvWddR6XQjnMtOyeHgVohAhen6HzJ3efp6wylml0sDsbRJpjmYgSTgvVKC9nQN_-hj9OcU5vOcM2l1LTvRKMuFmpjRzAxhantwrXjYRfdlCDE9n_ZS94ymVg3gS-Cy1MpGYLZ57iz-WgYNb-7M0t3pnVn_nRndJPEIpUGpw3kf7M8Yf0CEEOeDA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Jones, Morgan R.</creator><creator>Bobbitt, N. Scott</creator><creator>DelRio, Frank W.</creator><creator>Wilson, Mark A.</creator><creator>Howard, Hannah C.</creator><creator>Endsley, Melina A.</creator><creator>Pegues, Jonathan W.</creator><creator>Lu, Ping</creator><creator>Kustas, Andrew B.</creator><creator>Beyerlein, Irene J.</creator><creator>Chandross, Michael</creator><creator>Argibay, Nicolas</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6473-7568</orcidid></search><sort><creationdate>20230601</creationdate><title>Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb</title><author>Jones, Morgan R. ; Bobbitt, N. Scott ; DelRio, Frank W. ; Wilson, Mark A. ; Howard, Hannah C. ; Endsley, Melina A. ; Pegues, Jonathan W. ; Lu, Ping ; Kustas, Andrew B. ; Beyerlein, Irene J. ; Chandross, Michael ; Argibay, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f8e1bf4d9ccfa208d65a66ba12a5cdbb8166fcd7d1440538c22854c5bb0a33f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>alloys</topic><topic>brittleness</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Comparative analysis</topic><topic>Crystallography and Scattering Methods</topic><topic>Eutectic temperature</topic><topic>Grain boundary sliding</topic><topic>Hardness</topic><topic>Heat resistant alloys</topic><topic>Intermetallic compounds</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mechanical twinning</topic><topic>Metals & Corrosion</topic><topic>microscopy</topic><topic>Microstructure</topic><topic>Molecular dynamics</topic><topic>Multiphase</topic><topic>nanocrystals</topic><topic>Nickel base alloys</topic><topic>Niobium</topic><topic>Nucleation</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><topic>plasticity</topic><topic>Polymer Sciences</topic><topic>Production methods</topic><topic>Rapid solidification</topic><topic>Simulation methods</topic><topic>Solid Mechanics</topic><topic>solidification</topic><topic>Superalloys</topic><topic>Temperature dependence</topic><topic>Twinning (Crystallography)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Bobbitt, N. Scott</creatorcontrib><creatorcontrib>DelRio, Frank W.</creatorcontrib><creatorcontrib>Wilson, Mark A.</creatorcontrib><creatorcontrib>Howard, Hannah C.</creatorcontrib><creatorcontrib>Endsley, Melina A.</creatorcontrib><creatorcontrib>Pegues, Jonathan W.</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Kustas, Andrew B.</creatorcontrib><creatorcontrib>Beyerlein, Irene J.</creatorcontrib><creatorcontrib>Chandross, Michael</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Morgan R.</au><au>Bobbitt, N. Scott</au><au>DelRio, Frank W.</au><au>Wilson, Mark A.</au><au>Howard, Hannah C.</au><au>Endsley, Melina A.</au><au>Pegues, Jonathan W.</au><au>Lu, Ping</au><au>Kustas, Andrew B.</au><au>Beyerlein, Irene J.</au><au>Chandross, Michael</au><au>Argibay, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>58</volume><issue>23</issue><spage>9723</spage><epage>9736</epage><pages>9723-9736</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The temperature-dependent hardness of additively-manufactured near-eutectic Ni–Nb was investigated. This alloy was found to have solidified into a two-phase nanoscale microstructure with peak hardness of
H
≅ 14–17 GPa at temperatures up to 400 °C, above which irreversible softening was observed despite retention of significant strength compared to traditionally-synthesized Ni-based superalloys. Experiments and molecular-dynamics simulations show that deformation for single-phase nanocrystalline volumes was confined to intragranular slip-band formation in
δ
-Ni
3
Nb and to intergranular grain-boundary sliding in
μ
-Ni
6
Nb
7
. However, microscopy in the nanostructured two-phase regions after severe plastic deformation indicated that phase boundaries acted as nucleation sites for dislocations, promoting twinning-induced plasticity (TWIP) in the
μ
-Ni
6
Nb
7
grains. This work highlights (1) that additive manufacturing techniques enable formation of unique microstructures that exhibit superior mechanical properties, and (2) that multi-phase intermetallic compounds provide a route to mitigate brittle fracture though the promotion of twinning-induced plasticity. High strength and the absence of interface decohesion (cracking) suggests that multi-phase intermetallic systems may be a viable route for design of new printable superalloys. These results suggest that additive manufacturing methods and rapid solidification via non-equilibrium pathways may enable a pathway for achieving high combined strength and ductility.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08636-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6473-7568</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2023-06, Vol.58 (23), p.9723-9736 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153176835 |
source | SpringerLink Journals - AutoHoldings |
subjects | 3D printing Additive manufacturing alloys brittleness Characterization and Evaluation of Materials Chemical synthesis Chemistry and Materials Science Classical Mechanics Comparative analysis Crystallography and Scattering Methods Eutectic temperature Grain boundary sliding Hardness Heat resistant alloys Intermetallic compounds Manufacturing Materials Science Mechanical properties Mechanical twinning Metals & Corrosion microscopy Microstructure Molecular dynamics Multiphase nanocrystals Nickel base alloys Niobium Nucleation Plastic deformation Plastic properties plasticity Polymer Sciences Production methods Rapid solidification Simulation methods Solid Mechanics solidification Superalloys Temperature dependence Twinning (Crystallography) |
title | Evidence of twinning-induced plasticity (TWIP) and ultrahigh hardness in additively-manufactured near-eutectic Ni–Nb |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20twinning-induced%20plasticity%20(TWIP)%20and%20ultrahigh%20hardness%20in%20additively-manufactured%20near-eutectic%20Ni%E2%80%93Nb&rft.jtitle=Journal%20of%20materials%20science&rft.au=Jones,%20Morgan%20R.&rft.date=2023-06-01&rft.volume=58&rft.issue=23&rft.spage=9723&rft.epage=9736&rft.pages=9723-9736&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08636-8&rft_dat=%3Cgale_proqu%3EA752835139%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825580743&rft_id=info:pmid/&rft_galeid=A752835139&rfr_iscdi=true |