Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution
Most Citrus L. ‘species’ have arisen through reticulated evolution, resulting in many hybrid species with constant chromosome number (2 n = 18) and confused phylogenetic relationship. Before the molecular era, those hybrids were classified in systems with high numbers of species, when in fact the nu...
Gespeichert in:
Veröffentlicht in: | Tree genetics & genomes 2023-08, Vol.19 (4), p.36-36, Article 36 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 4 |
container_start_page | 36 |
container_title | Tree genetics & genomes |
container_volume | 19 |
creator | Montenegro, Claudio Roa, Fernando Soares Filho, Walter dos Santos Barros e Silva, Ana Emília |
description | Most
Citrus
L. ‘species’ have arisen through reticulated evolution, resulting in many hybrid species with constant chromosome number (2
n
= 18) and confused phylogenetic relationship. Before the molecular era, those hybrids were classified in systems with high numbers of species, when in fact the number of true species is quite small. Cytogenetic and molecular markers have been important tools for characterizing and understanding the hybrids origin, especially with the high variation in the heterochromatin patterns reveled by CMA/DAPI double staining technique. We aimed to determine the heterochromatin pattern distribution of 12
Citrus
accessions using CMA/DAPI flourochromes and correlate the results with the currently available cytogenetic, molecular, and phylogenomics data to investigate their possible origins and karyotype evolution. We also performed FISH with 35S rDNA probes in some accessions to improve our discussion. The distinct heteromorphic distribution patterns of CMA
+
/DAPI
-
bands among these accessions’ karyotypes confirm their hybrid origins. The hybrid species were then classified into two groups (I and II) based on heterochromatin patterns and phylogenetic relationship. Most hybrids in group I, with class A chromosomes, had
C. maxima
as an ancestor, while those in group II were descendants of species belonging to the subgenus papeda. We were able to correlate our finds with the available cytogenetic and molecular data, contributing to our understanding of the origins of
Citrus
hybrid species and their karyotype evolution. |
doi_str_mv | 10.1007/s11295-023-01610-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153173467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839647348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-1bf74434fcd0d1ba540dd0510af2e8d35a364d86f5f1184c851499b888d2a10b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gssbAEzrGTOGyoAopUiQVmy7Gd4jaNg-0U9d9jKAKJgemeTt97unsInRO4IgDVdSAkr4sMcpoBKQlkcIAmSbAsreHwR7P8GJ2EsAJgFZTlBKm5icY79erdRkar8CBjWvQBuxbPbPRjwN5sbbDR6BsscW_ecefcGsuIw2CUNQn1dmmTRfYar6XfubgbDDZb143Ruv4UHbWyC-bse07Ry_3d82yeLZ4eHme3i0xRoDEjTVsxRlmrNGjSyIKB1lAQkG1uuKaFpCXTvGyLlhDOFC8Iq-uGc65zSaChU3S5zx28extNiGJjgzJdJ3vjxiAoKSipKCurhF78QVdu9H26TuSc1iVLGE9UvqeUdyF404rB2016UBAQn72Lfe8i9S6-eheQTHRvCgnul8b_Rv_j-gDVWYX9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839647348</pqid></control><display><type>article</type><title>Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution</title><source>Springer Nature - Complete Springer Journals</source><creator>Montenegro, Claudio ; Roa, Fernando ; Soares Filho, Walter dos Santos ; Barros e Silva, Ana Emília</creator><creatorcontrib>Montenegro, Claudio ; Roa, Fernando ; Soares Filho, Walter dos Santos ; Barros e Silva, Ana Emília</creatorcontrib><description>Most
Citrus
L. ‘species’ have arisen through reticulated evolution, resulting in many hybrid species with constant chromosome number (2
n
= 18) and confused phylogenetic relationship. Before the molecular era, those hybrids were classified in systems with high numbers of species, when in fact the number of true species is quite small. Cytogenetic and molecular markers have been important tools for characterizing and understanding the hybrids origin, especially with the high variation in the heterochromatin patterns reveled by CMA/DAPI double staining technique. We aimed to determine the heterochromatin pattern distribution of 12
Citrus
accessions using CMA/DAPI flourochromes and correlate the results with the currently available cytogenetic, molecular, and phylogenomics data to investigate their possible origins and karyotype evolution. We also performed FISH with 35S rDNA probes in some accessions to improve our discussion. The distinct heteromorphic distribution patterns of CMA
+
/DAPI
-
bands among these accessions’ karyotypes confirm their hybrid origins. The hybrid species were then classified into two groups (I and II) based on heterochromatin patterns and phylogenetic relationship. Most hybrids in group I, with class A chromosomes, had
C. maxima
as an ancestor, while those in group II were descendants of species belonging to the subgenus papeda. We were able to correlate our finds with the available cytogenetic and molecular data, contributing to our understanding of the origins of
Citrus
hybrid species and their karyotype evolution.</description><identifier>ISSN: 1614-2942</identifier><identifier>EISSN: 1614-2950</identifier><identifier>DOI: 10.1007/s11295-023-01610-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>4',6-diamidino-2-phenylindole ; ancestry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome number ; Chromosomes ; Citrinae ; Citrus ; Citrus fruits ; Cytogenetics ; Distribution patterns ; Evolution ; fish ; Forestry ; Fruits ; genome ; Heterochromatin ; hybrid species ; Hybrids ; Karyotypes ; karyotyping ; Life Sciences ; Original Article ; Phylogenetics ; Phylogeny ; Plant Breeding/Biotechnology ; plant genetics ; Plant Genetics and Genomics ; Tree Biology</subject><ispartof>Tree genetics & genomes, 2023-08, Vol.19 (4), p.36-36, Article 36</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-1bf74434fcd0d1ba540dd0510af2e8d35a364d86f5f1184c851499b888d2a10b3</cites><orcidid>0000-0001-5940-4374 ; 0000-0001-5410-3740 ; 0000-0003-2089-1608 ; 0000-0002-2430-9374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11295-023-01610-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11295-023-01610-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Montenegro, Claudio</creatorcontrib><creatorcontrib>Roa, Fernando</creatorcontrib><creatorcontrib>Soares Filho, Walter dos Santos</creatorcontrib><creatorcontrib>Barros e Silva, Ana Emília</creatorcontrib><title>Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution</title><title>Tree genetics & genomes</title><addtitle>Tree Genetics & Genomes</addtitle><description>Most
Citrus
L. ‘species’ have arisen through reticulated evolution, resulting in many hybrid species with constant chromosome number (2
n
= 18) and confused phylogenetic relationship. Before the molecular era, those hybrids were classified in systems with high numbers of species, when in fact the number of true species is quite small. Cytogenetic and molecular markers have been important tools for characterizing and understanding the hybrids origin, especially with the high variation in the heterochromatin patterns reveled by CMA/DAPI double staining technique. We aimed to determine the heterochromatin pattern distribution of 12
Citrus
accessions using CMA/DAPI flourochromes and correlate the results with the currently available cytogenetic, molecular, and phylogenomics data to investigate their possible origins and karyotype evolution. We also performed FISH with 35S rDNA probes in some accessions to improve our discussion. The distinct heteromorphic distribution patterns of CMA
+
/DAPI
-
bands among these accessions’ karyotypes confirm their hybrid origins. The hybrid species were then classified into two groups (I and II) based on heterochromatin patterns and phylogenetic relationship. Most hybrids in group I, with class A chromosomes, had
C. maxima
as an ancestor, while those in group II were descendants of species belonging to the subgenus papeda. We were able to correlate our finds with the available cytogenetic and molecular data, contributing to our understanding of the origins of
Citrus
hybrid species and their karyotype evolution.</description><subject>4',6-diamidino-2-phenylindole</subject><subject>ancestry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome number</subject><subject>Chromosomes</subject><subject>Citrinae</subject><subject>Citrus</subject><subject>Citrus fruits</subject><subject>Cytogenetics</subject><subject>Distribution patterns</subject><subject>Evolution</subject><subject>fish</subject><subject>Forestry</subject><subject>Fruits</subject><subject>genome</subject><subject>Heterochromatin</subject><subject>hybrid species</subject><subject>Hybrids</subject><subject>Karyotypes</subject><subject>karyotyping</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plant Breeding/Biotechnology</subject><subject>plant genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Tree Biology</subject><issn>1614-2942</issn><issn>1614-2950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5gssbAEzrGTOGyoAopUiQVmy7Gd4jaNg-0U9d9jKAKJgemeTt97unsInRO4IgDVdSAkr4sMcpoBKQlkcIAmSbAsreHwR7P8GJ2EsAJgFZTlBKm5icY79erdRkar8CBjWvQBuxbPbPRjwN5sbbDR6BsscW_ecefcGsuIw2CUNQn1dmmTRfYar6XfubgbDDZb143Ruv4UHbWyC-bse07Ry_3d82yeLZ4eHme3i0xRoDEjTVsxRlmrNGjSyIKB1lAQkG1uuKaFpCXTvGyLlhDOFC8Iq-uGc65zSaChU3S5zx28extNiGJjgzJdJ3vjxiAoKSipKCurhF78QVdu9H26TuSc1iVLGE9UvqeUdyF404rB2016UBAQn72Lfe8i9S6-eheQTHRvCgnul8b_Rv_j-gDVWYX9</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Montenegro, Claudio</creator><creator>Roa, Fernando</creator><creator>Soares Filho, Walter dos Santos</creator><creator>Barros e Silva, Ana Emília</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5940-4374</orcidid><orcidid>https://orcid.org/0000-0001-5410-3740</orcidid><orcidid>https://orcid.org/0000-0003-2089-1608</orcidid><orcidid>https://orcid.org/0000-0002-2430-9374</orcidid></search><sort><creationdate>20230801</creationdate><title>Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution</title><author>Montenegro, Claudio ; Roa, Fernando ; Soares Filho, Walter dos Santos ; Barros e Silva, Ana Emília</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-1bf74434fcd0d1ba540dd0510af2e8d35a364d86f5f1184c851499b888d2a10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>4',6-diamidino-2-phenylindole</topic><topic>ancestry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome number</topic><topic>Chromosomes</topic><topic>Citrinae</topic><topic>Citrus</topic><topic>Citrus fruits</topic><topic>Cytogenetics</topic><topic>Distribution patterns</topic><topic>Evolution</topic><topic>fish</topic><topic>Forestry</topic><topic>Fruits</topic><topic>genome</topic><topic>Heterochromatin</topic><topic>hybrid species</topic><topic>Hybrids</topic><topic>Karyotypes</topic><topic>karyotyping</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plant Breeding/Biotechnology</topic><topic>plant genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Tree Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montenegro, Claudio</creatorcontrib><creatorcontrib>Roa, Fernando</creatorcontrib><creatorcontrib>Soares Filho, Walter dos Santos</creatorcontrib><creatorcontrib>Barros e Silva, Ana Emília</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Tree genetics & genomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montenegro, Claudio</au><au>Roa, Fernando</au><au>Soares Filho, Walter dos Santos</au><au>Barros e Silva, Ana Emília</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution</atitle><jtitle>Tree genetics & genomes</jtitle><stitle>Tree Genetics & Genomes</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>4</issue><spage>36</spage><epage>36</epage><pages>36-36</pages><artnum>36</artnum><issn>1614-2942</issn><eissn>1614-2950</eissn><abstract>Most
Citrus
L. ‘species’ have arisen through reticulated evolution, resulting in many hybrid species with constant chromosome number (2
n
= 18) and confused phylogenetic relationship. Before the molecular era, those hybrids were classified in systems with high numbers of species, when in fact the number of true species is quite small. Cytogenetic and molecular markers have been important tools for characterizing and understanding the hybrids origin, especially with the high variation in the heterochromatin patterns reveled by CMA/DAPI double staining technique. We aimed to determine the heterochromatin pattern distribution of 12
Citrus
accessions using CMA/DAPI flourochromes and correlate the results with the currently available cytogenetic, molecular, and phylogenomics data to investigate their possible origins and karyotype evolution. We also performed FISH with 35S rDNA probes in some accessions to improve our discussion. The distinct heteromorphic distribution patterns of CMA
+
/DAPI
-
bands among these accessions’ karyotypes confirm their hybrid origins. The hybrid species were then classified into two groups (I and II) based on heterochromatin patterns and phylogenetic relationship. Most hybrids in group I, with class A chromosomes, had
C. maxima
as an ancestor, while those in group II were descendants of species belonging to the subgenus papeda. We were able to correlate our finds with the available cytogenetic and molecular data, contributing to our understanding of the origins of
Citrus
hybrid species and their karyotype evolution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11295-023-01610-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5940-4374</orcidid><orcidid>https://orcid.org/0000-0001-5410-3740</orcidid><orcidid>https://orcid.org/0000-0003-2089-1608</orcidid><orcidid>https://orcid.org/0000-0002-2430-9374</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-2942 |
ispartof | Tree genetics & genomes, 2023-08, Vol.19 (4), p.36-36, Article 36 |
issn | 1614-2942 1614-2950 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153173467 |
source | Springer Nature - Complete Springer Journals |
subjects | 4',6-diamidino-2-phenylindole ancestry Biomedical and Life Sciences Biotechnology Chromosome number Chromosomes Citrinae Citrus Citrus fruits Cytogenetics Distribution patterns Evolution fish Forestry Fruits genome Heterochromatin hybrid species Hybrids Karyotypes karyotyping Life Sciences Original Article Phylogenetics Phylogeny Plant Breeding/Biotechnology plant genetics Plant Genetics and Genomics Tree Biology |
title | Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterochromatic%20patterns%20of%20Citrus%20revisited:%20a%20new%20look%20at%20species%20origins%20and%20karyotype%20evolution&rft.jtitle=Tree%20genetics%20&%20genomes&rft.au=Montenegro,%20Claudio&rft.date=2023-08-01&rft.volume=19&rft.issue=4&rft.spage=36&rft.epage=36&rft.pages=36-36&rft.artnum=36&rft.issn=1614-2942&rft.eissn=1614-2950&rft_id=info:doi/10.1007/s11295-023-01610-0&rft_dat=%3Cproquest_cross%3E2839647348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839647348&rft_id=info:pmid/&rfr_iscdi=true |