Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution

Most Citrus L. ‘species’ have arisen through reticulated evolution, resulting in many hybrid species with constant chromosome number (2 n = 18) and confused phylogenetic relationship. Before the molecular era, those hybrids were classified in systems with high numbers of species, when in fact the nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tree genetics & genomes 2023-08, Vol.19 (4), p.36-36, Article 36
Hauptverfasser: Montenegro, Claudio, Roa, Fernando, Soares Filho, Walter dos Santos, Barros e Silva, Ana Emília
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 4
container_start_page 36
container_title Tree genetics & genomes
container_volume 19
creator Montenegro, Claudio
Roa, Fernando
Soares Filho, Walter dos Santos
Barros e Silva, Ana Emília
description Most Citrus L. ‘species’ have arisen through reticulated evolution, resulting in many hybrid species with constant chromosome number (2 n = 18) and confused phylogenetic relationship. Before the molecular era, those hybrids were classified in systems with high numbers of species, when in fact the number of true species is quite small. Cytogenetic and molecular markers have been important tools for characterizing and understanding the hybrids origin, especially with the high variation in the heterochromatin patterns reveled by CMA/DAPI double staining technique. We aimed to determine the heterochromatin pattern distribution of 12 Citrus accessions using CMA/DAPI flourochromes and correlate the results with the currently available cytogenetic, molecular, and phylogenomics data to investigate their possible origins and karyotype evolution. We also performed FISH with 35S rDNA probes in some accessions to improve our discussion. The distinct heteromorphic distribution patterns of CMA + /DAPI - bands among these accessions’ karyotypes confirm their hybrid origins. The hybrid species were then classified into two groups (I and II) based on heterochromatin patterns and phylogenetic relationship. Most hybrids in group I, with class A chromosomes, had C. maxima as an ancestor, while those in group II were descendants of species belonging to the subgenus papeda. We were able to correlate our finds with the available cytogenetic and molecular data, contributing to our understanding of the origins of Citrus hybrid species and their karyotype evolution.
doi_str_mv 10.1007/s11295-023-01610-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153173467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839647348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-1bf74434fcd0d1ba540dd0510af2e8d35a364d86f5f1184c851499b888d2a10b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gssbAEzrGTOGyoAopUiQVmy7Gd4jaNg-0U9d9jKAKJgemeTt97unsInRO4IgDVdSAkr4sMcpoBKQlkcIAmSbAsreHwR7P8GJ2EsAJgFZTlBKm5icY79erdRkar8CBjWvQBuxbPbPRjwN5sbbDR6BsscW_ecefcGsuIw2CUNQn1dmmTRfYar6XfubgbDDZb143Ruv4UHbWyC-bse07Ry_3d82yeLZ4eHme3i0xRoDEjTVsxRlmrNGjSyIKB1lAQkG1uuKaFpCXTvGyLlhDOFC8Iq-uGc65zSaChU3S5zx28extNiGJjgzJdJ3vjxiAoKSipKCurhF78QVdu9H26TuSc1iVLGE9UvqeUdyF404rB2016UBAQn72Lfe8i9S6-eheQTHRvCgnul8b_Rv_j-gDVWYX9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839647348</pqid></control><display><type>article</type><title>Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution</title><source>Springer Nature - Complete Springer Journals</source><creator>Montenegro, Claudio ; Roa, Fernando ; Soares Filho, Walter dos Santos ; Barros e Silva, Ana Emília</creator><creatorcontrib>Montenegro, Claudio ; Roa, Fernando ; Soares Filho, Walter dos Santos ; Barros e Silva, Ana Emília</creatorcontrib><description>Most Citrus L. ‘species’ have arisen through reticulated evolution, resulting in many hybrid species with constant chromosome number (2 n = 18) and confused phylogenetic relationship. Before the molecular era, those hybrids were classified in systems with high numbers of species, when in fact the number of true species is quite small. Cytogenetic and molecular markers have been important tools for characterizing and understanding the hybrids origin, especially with the high variation in the heterochromatin patterns reveled by CMA/DAPI double staining technique. We aimed to determine the heterochromatin pattern distribution of 12 Citrus accessions using CMA/DAPI flourochromes and correlate the results with the currently available cytogenetic, molecular, and phylogenomics data to investigate their possible origins and karyotype evolution. We also performed FISH with 35S rDNA probes in some accessions to improve our discussion. The distinct heteromorphic distribution patterns of CMA + /DAPI - bands among these accessions’ karyotypes confirm their hybrid origins. The hybrid species were then classified into two groups (I and II) based on heterochromatin patterns and phylogenetic relationship. Most hybrids in group I, with class A chromosomes, had C. maxima as an ancestor, while those in group II were descendants of species belonging to the subgenus papeda. We were able to correlate our finds with the available cytogenetic and molecular data, contributing to our understanding of the origins of Citrus hybrid species and their karyotype evolution.</description><identifier>ISSN: 1614-2942</identifier><identifier>EISSN: 1614-2950</identifier><identifier>DOI: 10.1007/s11295-023-01610-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>4',6-diamidino-2-phenylindole ; ancestry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome number ; Chromosomes ; Citrinae ; Citrus ; Citrus fruits ; Cytogenetics ; Distribution patterns ; Evolution ; fish ; Forestry ; Fruits ; genome ; Heterochromatin ; hybrid species ; Hybrids ; Karyotypes ; karyotyping ; Life Sciences ; Original Article ; Phylogenetics ; Phylogeny ; Plant Breeding/Biotechnology ; plant genetics ; Plant Genetics and Genomics ; Tree Biology</subject><ispartof>Tree genetics &amp; genomes, 2023-08, Vol.19 (4), p.36-36, Article 36</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-1bf74434fcd0d1ba540dd0510af2e8d35a364d86f5f1184c851499b888d2a10b3</cites><orcidid>0000-0001-5940-4374 ; 0000-0001-5410-3740 ; 0000-0003-2089-1608 ; 0000-0002-2430-9374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11295-023-01610-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11295-023-01610-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Montenegro, Claudio</creatorcontrib><creatorcontrib>Roa, Fernando</creatorcontrib><creatorcontrib>Soares Filho, Walter dos Santos</creatorcontrib><creatorcontrib>Barros e Silva, Ana Emília</creatorcontrib><title>Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution</title><title>Tree genetics &amp; genomes</title><addtitle>Tree Genetics &amp; Genomes</addtitle><description>Most Citrus L. ‘species’ have arisen through reticulated evolution, resulting in many hybrid species with constant chromosome number (2 n = 18) and confused phylogenetic relationship. Before the molecular era, those hybrids were classified in systems with high numbers of species, when in fact the number of true species is quite small. Cytogenetic and molecular markers have been important tools for characterizing and understanding the hybrids origin, especially with the high variation in the heterochromatin patterns reveled by CMA/DAPI double staining technique. We aimed to determine the heterochromatin pattern distribution of 12 Citrus accessions using CMA/DAPI flourochromes and correlate the results with the currently available cytogenetic, molecular, and phylogenomics data to investigate their possible origins and karyotype evolution. We also performed FISH with 35S rDNA probes in some accessions to improve our discussion. The distinct heteromorphic distribution patterns of CMA + /DAPI - bands among these accessions’ karyotypes confirm their hybrid origins. The hybrid species were then classified into two groups (I and II) based on heterochromatin patterns and phylogenetic relationship. Most hybrids in group I, with class A chromosomes, had C. maxima as an ancestor, while those in group II were descendants of species belonging to the subgenus papeda. We were able to correlate our finds with the available cytogenetic and molecular data, contributing to our understanding of the origins of Citrus hybrid species and their karyotype evolution.</description><subject>4',6-diamidino-2-phenylindole</subject><subject>ancestry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome number</subject><subject>Chromosomes</subject><subject>Citrinae</subject><subject>Citrus</subject><subject>Citrus fruits</subject><subject>Cytogenetics</subject><subject>Distribution patterns</subject><subject>Evolution</subject><subject>fish</subject><subject>Forestry</subject><subject>Fruits</subject><subject>genome</subject><subject>Heterochromatin</subject><subject>hybrid species</subject><subject>Hybrids</subject><subject>Karyotypes</subject><subject>karyotyping</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plant Breeding/Biotechnology</subject><subject>plant genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Tree Biology</subject><issn>1614-2942</issn><issn>1614-2950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5gssbAEzrGTOGyoAopUiQVmy7Gd4jaNg-0U9d9jKAKJgemeTt97unsInRO4IgDVdSAkr4sMcpoBKQlkcIAmSbAsreHwR7P8GJ2EsAJgFZTlBKm5icY79erdRkar8CBjWvQBuxbPbPRjwN5sbbDR6BsscW_ecefcGsuIw2CUNQn1dmmTRfYar6XfubgbDDZb143Ruv4UHbWyC-bse07Ry_3d82yeLZ4eHme3i0xRoDEjTVsxRlmrNGjSyIKB1lAQkG1uuKaFpCXTvGyLlhDOFC8Iq-uGc65zSaChU3S5zx28extNiGJjgzJdJ3vjxiAoKSipKCurhF78QVdu9H26TuSc1iVLGE9UvqeUdyF404rB2016UBAQn72Lfe8i9S6-eheQTHRvCgnul8b_Rv_j-gDVWYX9</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Montenegro, Claudio</creator><creator>Roa, Fernando</creator><creator>Soares Filho, Walter dos Santos</creator><creator>Barros e Silva, Ana Emília</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5940-4374</orcidid><orcidid>https://orcid.org/0000-0001-5410-3740</orcidid><orcidid>https://orcid.org/0000-0003-2089-1608</orcidid><orcidid>https://orcid.org/0000-0002-2430-9374</orcidid></search><sort><creationdate>20230801</creationdate><title>Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution</title><author>Montenegro, Claudio ; Roa, Fernando ; Soares Filho, Walter dos Santos ; Barros e Silva, Ana Emília</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-1bf74434fcd0d1ba540dd0510af2e8d35a364d86f5f1184c851499b888d2a10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>4',6-diamidino-2-phenylindole</topic><topic>ancestry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome number</topic><topic>Chromosomes</topic><topic>Citrinae</topic><topic>Citrus</topic><topic>Citrus fruits</topic><topic>Cytogenetics</topic><topic>Distribution patterns</topic><topic>Evolution</topic><topic>fish</topic><topic>Forestry</topic><topic>Fruits</topic><topic>genome</topic><topic>Heterochromatin</topic><topic>hybrid species</topic><topic>Hybrids</topic><topic>Karyotypes</topic><topic>karyotyping</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plant Breeding/Biotechnology</topic><topic>plant genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Tree Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montenegro, Claudio</creatorcontrib><creatorcontrib>Roa, Fernando</creatorcontrib><creatorcontrib>Soares Filho, Walter dos Santos</creatorcontrib><creatorcontrib>Barros e Silva, Ana Emília</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Tree genetics &amp; genomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montenegro, Claudio</au><au>Roa, Fernando</au><au>Soares Filho, Walter dos Santos</au><au>Barros e Silva, Ana Emília</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution</atitle><jtitle>Tree genetics &amp; genomes</jtitle><stitle>Tree Genetics &amp; Genomes</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>4</issue><spage>36</spage><epage>36</epage><pages>36-36</pages><artnum>36</artnum><issn>1614-2942</issn><eissn>1614-2950</eissn><abstract>Most Citrus L. ‘species’ have arisen through reticulated evolution, resulting in many hybrid species with constant chromosome number (2 n = 18) and confused phylogenetic relationship. Before the molecular era, those hybrids were classified in systems with high numbers of species, when in fact the number of true species is quite small. Cytogenetic and molecular markers have been important tools for characterizing and understanding the hybrids origin, especially with the high variation in the heterochromatin patterns reveled by CMA/DAPI double staining technique. We aimed to determine the heterochromatin pattern distribution of 12 Citrus accessions using CMA/DAPI flourochromes and correlate the results with the currently available cytogenetic, molecular, and phylogenomics data to investigate their possible origins and karyotype evolution. We also performed FISH with 35S rDNA probes in some accessions to improve our discussion. The distinct heteromorphic distribution patterns of CMA + /DAPI - bands among these accessions’ karyotypes confirm their hybrid origins. The hybrid species were then classified into two groups (I and II) based on heterochromatin patterns and phylogenetic relationship. Most hybrids in group I, with class A chromosomes, had C. maxima as an ancestor, while those in group II were descendants of species belonging to the subgenus papeda. We were able to correlate our finds with the available cytogenetic and molecular data, contributing to our understanding of the origins of Citrus hybrid species and their karyotype evolution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11295-023-01610-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5940-4374</orcidid><orcidid>https://orcid.org/0000-0001-5410-3740</orcidid><orcidid>https://orcid.org/0000-0003-2089-1608</orcidid><orcidid>https://orcid.org/0000-0002-2430-9374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-2942
ispartof Tree genetics & genomes, 2023-08, Vol.19 (4), p.36-36, Article 36
issn 1614-2942
1614-2950
language eng
recordid cdi_proquest_miscellaneous_3153173467
source Springer Nature - Complete Springer Journals
subjects 4',6-diamidino-2-phenylindole
ancestry
Biomedical and Life Sciences
Biotechnology
Chromosome number
Chromosomes
Citrinae
Citrus
Citrus fruits
Cytogenetics
Distribution patterns
Evolution
fish
Forestry
Fruits
genome
Heterochromatin
hybrid species
Hybrids
Karyotypes
karyotyping
Life Sciences
Original Article
Phylogenetics
Phylogeny
Plant Breeding/Biotechnology
plant genetics
Plant Genetics and Genomics
Tree Biology
title Heterochromatic patterns of Citrus revisited: a new look at species origins and karyotype evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterochromatic%20patterns%20of%20Citrus%20revisited:%20a%20new%20look%20at%20species%20origins%20and%20karyotype%20evolution&rft.jtitle=Tree%20genetics%20&%20genomes&rft.au=Montenegro,%20Claudio&rft.date=2023-08-01&rft.volume=19&rft.issue=4&rft.spage=36&rft.epage=36&rft.pages=36-36&rft.artnum=36&rft.issn=1614-2942&rft.eissn=1614-2950&rft_id=info:doi/10.1007/s11295-023-01610-0&rft_dat=%3Cproquest_cross%3E2839647348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839647348&rft_id=info:pmid/&rfr_iscdi=true