Hydrological Modeling in the Upper Lancang-Mekong River Basin Using Global and Regional Gridded Meteorological Re-Analyses

Multisource meteorological re-analyses provide the most reliable forcing data for driving hydrological models to simulate streamflow. We aimed to assess different hydrological responses through hydrological modeling in the upper Lancang-Mekong River Basin (LMRB) using two gridded meteorological data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2023-06, Vol.15 (12), p.2209
Hauptverfasser: Zhang, Shixiao, Lang, Yang, Yang, Furong, Qiao, Xinran, Li, Xiuni, Gu, Yuefei, Yi, Qi, Luo, Lifeng, Duan, Qingyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2209
container_title Water (Basel)
container_volume 15
creator Zhang, Shixiao
Lang, Yang
Yang, Furong
Qiao, Xinran
Li, Xiuni
Gu, Yuefei
Yi, Qi
Luo, Lifeng
Duan, Qingyun
description Multisource meteorological re-analyses provide the most reliable forcing data for driving hydrological models to simulate streamflow. We aimed to assess different hydrological responses through hydrological modeling in the upper Lancang-Mekong River Basin (LMRB) using two gridded meteorological datasets, Climate Forecast System Re-analysis (CFSR) and the China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS). We selected the Pearson’s correlation coefficient (R), percent bias (PBIAS), and root mean square error (RMSE) indices to compare the six meteorological variables of the two datasets. The spatial distributions of the statistical indicators in CFSR and CMADS, namely, the R, PBIAS, and RMSE values, were different. Furthermore, the soil and water assessment tool plus (SWAT+) model was used to perform hydrological modeling based on CFSR and CMADS meteorological re-analyses in the upper LMRB. The different meteorological datasets resulted in significant differences in hydrological responses, reflected by variations in the sensitive parameters and their optimal values. The differences in the calibrated optimal values for the sensitive parameters led to differences in the simulated water balance components between the CFSR- and CMADS-based SWAT+ models. These findings could help improve the understanding of the strengths and weaknesses of different meteorological re-analysis datasets and their roles in hydrological modeling.
doi_str_mv 10.3390/w15122209
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153170060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758733975</galeid><sourcerecordid>A758733975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-8cce6e6d129b2ae9708859771ea3982599b486af1ed47409e0ca5510fb3aece83</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhosoOOYu_AcFb_SiMx9t01zOoZuwIQx3XdLktGZ2SU06Zf56MyYqJhfJOed5cw55o-gSozGlHN1-4AwTQhA_iQYEMZqkaYpP_9zPo5H3GxRWyosiQ4Poc75Xzra20VK08dIqaLVpYm3i_gXiddeBixfCSGGaZAmvNtRW-j0k74QP0Nof6Flrq6AWRsUraLQ1IZg5rRSoeAk92N8OK0gmobz34C-is1q0Hkbf5zBaP9w_T-fJ4mn2OJ0sEknztE8KKSGHXGHCKyKAMxQm54xhEJQXJOO8Sotc1BhUylLEAUmRZRjVFRUgoaDD6Pr4bufs2w58X261l9C2woDd-ZLijGKGUI4CevUP3didC_P6khQkfBmnOQ7U-Eg1ooVSm9r2TsiwFWy1tAZqHfITlhUs2MKyILg5CqSz3juoy87prXD7EqPy4Fz54xz9Ah56ieY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829889361</pqid></control><display><type>article</type><title>Hydrological Modeling in the Upper Lancang-Mekong River Basin Using Global and Regional Gridded Meteorological Re-Analyses</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Shixiao ; Lang, Yang ; Yang, Furong ; Qiao, Xinran ; Li, Xiuni ; Gu, Yuefei ; Yi, Qi ; Luo, Lifeng ; Duan, Qingyun</creator><creatorcontrib>Zhang, Shixiao ; Lang, Yang ; Yang, Furong ; Qiao, Xinran ; Li, Xiuni ; Gu, Yuefei ; Yi, Qi ; Luo, Lifeng ; Duan, Qingyun</creatorcontrib><description>Multisource meteorological re-analyses provide the most reliable forcing data for driving hydrological models to simulate streamflow. We aimed to assess different hydrological responses through hydrological modeling in the upper Lancang-Mekong River Basin (LMRB) using two gridded meteorological datasets, Climate Forecast System Re-analysis (CFSR) and the China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS). We selected the Pearson’s correlation coefficient (R), percent bias (PBIAS), and root mean square error (RMSE) indices to compare the six meteorological variables of the two datasets. The spatial distributions of the statistical indicators in CFSR and CMADS, namely, the R, PBIAS, and RMSE values, were different. Furthermore, the soil and water assessment tool plus (SWAT+) model was used to perform hydrological modeling based on CFSR and CMADS meteorological re-analyses in the upper LMRB. The different meteorological datasets resulted in significant differences in hydrological responses, reflected by variations in the sensitive parameters and their optimal values. The differences in the calibrated optimal values for the sensitive parameters led to differences in the simulated water balance components between the CFSR- and CMADS-based SWAT+ models. These findings could help improve the understanding of the strengths and weaknesses of different meteorological re-analysis datasets and their roles in hydrological modeling.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15122209</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Calibration ; China ; climate ; Climate change ; Climate system ; Climatic changes ; Correlation coefficient ; Correlation coefficients ; data collection ; Datasets ; Floods ; Humidity ; Hydrologic models ; Hydrology ; Parameter sensitivity ; Precipitation ; Radiation ; River basins ; Rivers ; Root-mean-square errors ; Simulation ; Soil and Water Assessment Tool model ; Soil water ; Spatial distribution ; Stream discharge ; Stream flow ; Streamflow ; Temperature ; water ; Water balance ; Water balance (Hydrology) ; watersheds ; Wind</subject><ispartof>Water (Basel), 2023-06, Vol.15 (12), p.2209</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-8cce6e6d129b2ae9708859771ea3982599b486af1ed47409e0ca5510fb3aece83</citedby><cites>FETCH-LOGICAL-c364t-8cce6e6d129b2ae9708859771ea3982599b486af1ed47409e0ca5510fb3aece83</cites><orcidid>0000-0002-7950-3262 ; 0000-0001-9955-1512 ; 0000-0002-2829-7104 ; 0000-0001-5087-2390 ; 0000-0003-4761-2859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Shixiao</creatorcontrib><creatorcontrib>Lang, Yang</creatorcontrib><creatorcontrib>Yang, Furong</creatorcontrib><creatorcontrib>Qiao, Xinran</creatorcontrib><creatorcontrib>Li, Xiuni</creatorcontrib><creatorcontrib>Gu, Yuefei</creatorcontrib><creatorcontrib>Yi, Qi</creatorcontrib><creatorcontrib>Luo, Lifeng</creatorcontrib><creatorcontrib>Duan, Qingyun</creatorcontrib><title>Hydrological Modeling in the Upper Lancang-Mekong River Basin Using Global and Regional Gridded Meteorological Re-Analyses</title><title>Water (Basel)</title><description>Multisource meteorological re-analyses provide the most reliable forcing data for driving hydrological models to simulate streamflow. We aimed to assess different hydrological responses through hydrological modeling in the upper Lancang-Mekong River Basin (LMRB) using two gridded meteorological datasets, Climate Forecast System Re-analysis (CFSR) and the China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS). We selected the Pearson’s correlation coefficient (R), percent bias (PBIAS), and root mean square error (RMSE) indices to compare the six meteorological variables of the two datasets. The spatial distributions of the statistical indicators in CFSR and CMADS, namely, the R, PBIAS, and RMSE values, were different. Furthermore, the soil and water assessment tool plus (SWAT+) model was used to perform hydrological modeling based on CFSR and CMADS meteorological re-analyses in the upper LMRB. The different meteorological datasets resulted in significant differences in hydrological responses, reflected by variations in the sensitive parameters and their optimal values. The differences in the calibrated optimal values for the sensitive parameters led to differences in the simulated water balance components between the CFSR- and CMADS-based SWAT+ models. These findings could help improve the understanding of the strengths and weaknesses of different meteorological re-analysis datasets and their roles in hydrological modeling.</description><subject>Analysis</subject><subject>Calibration</subject><subject>China</subject><subject>climate</subject><subject>Climate change</subject><subject>Climate system</subject><subject>Climatic changes</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>data collection</subject><subject>Datasets</subject><subject>Floods</subject><subject>Humidity</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Parameter sensitivity</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>River basins</subject><subject>Rivers</subject><subject>Root-mean-square errors</subject><subject>Simulation</subject><subject>Soil and Water Assessment Tool model</subject><subject>Soil water</subject><subject>Spatial distribution</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow</subject><subject>Temperature</subject><subject>water</subject><subject>Water balance</subject><subject>Water balance (Hydrology)</subject><subject>watersheds</subject><subject>Wind</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1LwzAUhosoOOYu_AcFb_SiMx9t01zOoZuwIQx3XdLktGZ2SU06Zf56MyYqJhfJOed5cw55o-gSozGlHN1-4AwTQhA_iQYEMZqkaYpP_9zPo5H3GxRWyosiQ4Poc75Xzra20VK08dIqaLVpYm3i_gXiddeBixfCSGGaZAmvNtRW-j0k74QP0Nof6Flrq6AWRsUraLQ1IZg5rRSoeAk92N8OK0gmobz34C-is1q0Hkbf5zBaP9w_T-fJ4mn2OJ0sEknztE8KKSGHXGHCKyKAMxQm54xhEJQXJOO8Sotc1BhUylLEAUmRZRjVFRUgoaDD6Pr4bufs2w58X261l9C2woDd-ZLijGKGUI4CevUP3didC_P6khQkfBmnOQ7U-Eg1ooVSm9r2TsiwFWy1tAZqHfITlhUs2MKyILg5CqSz3juoy87prXD7EqPy4Fz54xz9Ah56ieY</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhang, Shixiao</creator><creator>Lang, Yang</creator><creator>Yang, Furong</creator><creator>Qiao, Xinran</creator><creator>Li, Xiuni</creator><creator>Gu, Yuefei</creator><creator>Yi, Qi</creator><creator>Luo, Lifeng</creator><creator>Duan, Qingyun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7950-3262</orcidid><orcidid>https://orcid.org/0000-0001-9955-1512</orcidid><orcidid>https://orcid.org/0000-0002-2829-7104</orcidid><orcidid>https://orcid.org/0000-0001-5087-2390</orcidid><orcidid>https://orcid.org/0000-0003-4761-2859</orcidid></search><sort><creationdate>20230601</creationdate><title>Hydrological Modeling in the Upper Lancang-Mekong River Basin Using Global and Regional Gridded Meteorological Re-Analyses</title><author>Zhang, Shixiao ; Lang, Yang ; Yang, Furong ; Qiao, Xinran ; Li, Xiuni ; Gu, Yuefei ; Yi, Qi ; Luo, Lifeng ; Duan, Qingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-8cce6e6d129b2ae9708859771ea3982599b486af1ed47409e0ca5510fb3aece83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Calibration</topic><topic>China</topic><topic>climate</topic><topic>Climate change</topic><topic>Climate system</topic><topic>Climatic changes</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>data collection</topic><topic>Datasets</topic><topic>Floods</topic><topic>Humidity</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Parameter sensitivity</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>River basins</topic><topic>Rivers</topic><topic>Root-mean-square errors</topic><topic>Simulation</topic><topic>Soil and Water Assessment Tool model</topic><topic>Soil water</topic><topic>Spatial distribution</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow</topic><topic>Temperature</topic><topic>water</topic><topic>Water balance</topic><topic>Water balance (Hydrology)</topic><topic>watersheds</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shixiao</creatorcontrib><creatorcontrib>Lang, Yang</creatorcontrib><creatorcontrib>Yang, Furong</creatorcontrib><creatorcontrib>Qiao, Xinran</creatorcontrib><creatorcontrib>Li, Xiuni</creatorcontrib><creatorcontrib>Gu, Yuefei</creatorcontrib><creatorcontrib>Yi, Qi</creatorcontrib><creatorcontrib>Luo, Lifeng</creatorcontrib><creatorcontrib>Duan, Qingyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shixiao</au><au>Lang, Yang</au><au>Yang, Furong</au><au>Qiao, Xinran</au><au>Li, Xiuni</au><au>Gu, Yuefei</au><au>Yi, Qi</au><au>Luo, Lifeng</au><au>Duan, Qingyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrological Modeling in the Upper Lancang-Mekong River Basin Using Global and Regional Gridded Meteorological Re-Analyses</atitle><jtitle>Water (Basel)</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>15</volume><issue>12</issue><spage>2209</spage><pages>2209-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Multisource meteorological re-analyses provide the most reliable forcing data for driving hydrological models to simulate streamflow. We aimed to assess different hydrological responses through hydrological modeling in the upper Lancang-Mekong River Basin (LMRB) using two gridded meteorological datasets, Climate Forecast System Re-analysis (CFSR) and the China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS). We selected the Pearson’s correlation coefficient (R), percent bias (PBIAS), and root mean square error (RMSE) indices to compare the six meteorological variables of the two datasets. The spatial distributions of the statistical indicators in CFSR and CMADS, namely, the R, PBIAS, and RMSE values, were different. Furthermore, the soil and water assessment tool plus (SWAT+) model was used to perform hydrological modeling based on CFSR and CMADS meteorological re-analyses in the upper LMRB. The different meteorological datasets resulted in significant differences in hydrological responses, reflected by variations in the sensitive parameters and their optimal values. The differences in the calibrated optimal values for the sensitive parameters led to differences in the simulated water balance components between the CFSR- and CMADS-based SWAT+ models. These findings could help improve the understanding of the strengths and weaknesses of different meteorological re-analysis datasets and their roles in hydrological modeling.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15122209</doi><orcidid>https://orcid.org/0000-0002-7950-3262</orcidid><orcidid>https://orcid.org/0000-0001-9955-1512</orcidid><orcidid>https://orcid.org/0000-0002-2829-7104</orcidid><orcidid>https://orcid.org/0000-0001-5087-2390</orcidid><orcidid>https://orcid.org/0000-0003-4761-2859</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2023-06, Vol.15 (12), p.2209
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_miscellaneous_3153170060
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis
Calibration
China
climate
Climate change
Climate system
Climatic changes
Correlation coefficient
Correlation coefficients
data collection
Datasets
Floods
Humidity
Hydrologic models
Hydrology
Parameter sensitivity
Precipitation
Radiation
River basins
Rivers
Root-mean-square errors
Simulation
Soil and Water Assessment Tool model
Soil water
Spatial distribution
Stream discharge
Stream flow
Streamflow
Temperature
water
Water balance
Water balance (Hydrology)
watersheds
Wind
title Hydrological Modeling in the Upper Lancang-Mekong River Basin Using Global and Regional Gridded Meteorological Re-Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrological%20Modeling%20in%20the%20Upper%20Lancang-Mekong%20River%20Basin%20Using%20Global%20and%20Regional%20Gridded%20Meteorological%20Re-Analyses&rft.jtitle=Water%20(Basel)&rft.au=Zhang,%20Shixiao&rft.date=2023-06-01&rft.volume=15&rft.issue=12&rft.spage=2209&rft.pages=2209-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15122209&rft_dat=%3Cgale_proqu%3EA758733975%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829889361&rft_id=info:pmid/&rft_galeid=A758733975&rfr_iscdi=true