Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers
In this paper, the two-simultaneous-leak isolation problem in water distribution networks is addressed. This methodology relies on optimal sensor placement together with a leak location strategy using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the water d...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2023-09, Vol.15 (17), p.3090 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 3090 |
container_title | Water (Basel) |
container_volume | 15 |
creator | Rodríguez-Argote, Carlos Andrés Begovich-Mendoza, Ofelia Navarro-Díaz, Adrián Santos-Ruiz, Ildeberto Puig, Vicenç Delgado-Aguiñaga, Jorge Alejandro |
description | In this paper, the two-simultaneous-leak isolation problem in water distribution networks is addressed. This methodology relies on optimal sensor placement together with a leak location strategy using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the water distribution network is proposed, aiming to reduce the computational cost that involves all possible combinations of two-leak scenarios. Each zone is composed of at least two consecutive nodes, which means that the number of zones is at most half the number of nodes. With this segmentation, the leak identification task is to locate the zones where the pair of leaks are occurring. To quantify the uncertainty degree, a relaxation node criterion is used. The simulation results evidenced that the outcomes are accurate in most cases by using one-relaxation-node and two-relaxation-node criteria. |
doi_str_mv | 10.3390/w15173090 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153165494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764466441</galeid><sourcerecordid>A764466441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d804324511987d36b6eb49f198fbd0c1a654a81aaa37f0a9919def4d5496d6b73</originalsourceid><addsrcrecordid>eNpdkd9LwzAQx4soOOYe_A8CvuhDZ9KkafM4569BmS8TH8u1SSRbl8ykZfjfGzcRMUe4y5fP9zhySXJJ8JRSgW_3JCcFxQKfJKMMFzRljJHTP_V5MglhjeNhoixzPEra1d6llYINWgTXQW-cRcaiN-iVR_cm9N40w0Fdqn7v_CagOwhKoqhs0uUSgZWoMlbBAW-92RoLtkfzDkIw2igfLpIzDV1Qk588Tl4fH1bz57R6eVrMZ1XaUs76VJaY0YzlhIiykJQ3XDVM6PjSjcQtAZ4zKAkA0EJjEIIIqTSTORNc8qag4-T62Hfn3cegQl9v40Sq68AqN4SakpyS2ESwiF79Q9du8DZOV2clzwpSclFGanqk3qFTtbHa9R7aGFJtTeus0ibqs4IzxuMl0XBzNLTeheCVrnfxQ8B_1gTX3yuqf1dEvwAgzIFV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862718698</pqid></control><display><type>article</type><title>Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rodríguez-Argote, Carlos Andrés ; Begovich-Mendoza, Ofelia ; Navarro-Díaz, Adrián ; Santos-Ruiz, Ildeberto ; Puig, Vicenç ; Delgado-Aguiñaga, Jorge Alejandro</creator><creatorcontrib>Rodríguez-Argote, Carlos Andrés ; Begovich-Mendoza, Ofelia ; Navarro-Díaz, Adrián ; Santos-Ruiz, Ildeberto ; Puig, Vicenç ; Delgado-Aguiñaga, Jorge Alejandro</creatorcontrib><description>In this paper, the two-simultaneous-leak isolation problem in water distribution networks is addressed. This methodology relies on optimal sensor placement together with a leak location strategy using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the water distribution network is proposed, aiming to reduce the computational cost that involves all possible combinations of two-leak scenarios. Each zone is composed of at least two consecutive nodes, which means that the number of zones is at most half the number of nodes. With this segmentation, the leak identification task is to locate the zones where the pair of leaks are occurring. To quantify the uncertainty degree, a relaxation node criterion is used. The simulation results evidenced that the outcomes are accurate in most cases by using one-relaxation-node and two-relaxation-node criteria.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15173090</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Discriminant analysis ; Leak detection ; Methods ; Neural networks ; Sensors ; uncertainty ; water ; water distribution</subject><ispartof>Water (Basel), 2023-09, Vol.15 (17), p.3090</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-d804324511987d36b6eb49f198fbd0c1a654a81aaa37f0a9919def4d5496d6b73</citedby><cites>FETCH-LOGICAL-c364t-d804324511987d36b6eb49f198fbd0c1a654a81aaa37f0a9919def4d5496d6b73</cites><orcidid>0000-0002-0099-8822 ; 0000-0003-3995-8091 ; 0000-0003-3795-3246 ; 0000-0002-6364-6429 ; 0000-0001-8440-6048 ; 0000-0002-9299-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rodríguez-Argote, Carlos Andrés</creatorcontrib><creatorcontrib>Begovich-Mendoza, Ofelia</creatorcontrib><creatorcontrib>Navarro-Díaz, Adrián</creatorcontrib><creatorcontrib>Santos-Ruiz, Ildeberto</creatorcontrib><creatorcontrib>Puig, Vicenç</creatorcontrib><creatorcontrib>Delgado-Aguiñaga, Jorge Alejandro</creatorcontrib><title>Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers</title><title>Water (Basel)</title><description>In this paper, the two-simultaneous-leak isolation problem in water distribution networks is addressed. This methodology relies on optimal sensor placement together with a leak location strategy using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the water distribution network is proposed, aiming to reduce the computational cost that involves all possible combinations of two-leak scenarios. Each zone is composed of at least two consecutive nodes, which means that the number of zones is at most half the number of nodes. With this segmentation, the leak identification task is to locate the zones where the pair of leaks are occurring. To quantify the uncertainty degree, a relaxation node criterion is used. The simulation results evidenced that the outcomes are accurate in most cases by using one-relaxation-node and two-relaxation-node criteria.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Discriminant analysis</subject><subject>Leak detection</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Sensors</subject><subject>uncertainty</subject><subject>water</subject><subject>water distribution</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd9LwzAQx4soOOYe_A8CvuhDZ9KkafM4569BmS8TH8u1SSRbl8ykZfjfGzcRMUe4y5fP9zhySXJJ8JRSgW_3JCcFxQKfJKMMFzRljJHTP_V5MglhjeNhoixzPEra1d6llYINWgTXQW-cRcaiN-iVR_cm9N40w0Fdqn7v_CagOwhKoqhs0uUSgZWoMlbBAW-92RoLtkfzDkIw2igfLpIzDV1Qk588Tl4fH1bz57R6eVrMZ1XaUs76VJaY0YzlhIiykJQ3XDVM6PjSjcQtAZ4zKAkA0EJjEIIIqTSTORNc8qag4-T62Hfn3cegQl9v40Sq68AqN4SakpyS2ESwiF79Q9du8DZOV2clzwpSclFGanqk3qFTtbHa9R7aGFJtTeus0ibqs4IzxuMl0XBzNLTeheCVrnfxQ8B_1gTX3yuqf1dEvwAgzIFV</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Rodríguez-Argote, Carlos Andrés</creator><creator>Begovich-Mendoza, Ofelia</creator><creator>Navarro-Díaz, Adrián</creator><creator>Santos-Ruiz, Ildeberto</creator><creator>Puig, Vicenç</creator><creator>Delgado-Aguiñaga, Jorge Alejandro</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0099-8822</orcidid><orcidid>https://orcid.org/0000-0003-3995-8091</orcidid><orcidid>https://orcid.org/0000-0003-3795-3246</orcidid><orcidid>https://orcid.org/0000-0002-6364-6429</orcidid><orcidid>https://orcid.org/0000-0001-8440-6048</orcidid><orcidid>https://orcid.org/0000-0002-9299-6102</orcidid></search><sort><creationdate>20230901</creationdate><title>Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers</title><author>Rodríguez-Argote, Carlos Andrés ; Begovich-Mendoza, Ofelia ; Navarro-Díaz, Adrián ; Santos-Ruiz, Ildeberto ; Puig, Vicenç ; Delgado-Aguiñaga, Jorge Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d804324511987d36b6eb49f198fbd0c1a654a81aaa37f0a9919def4d5496d6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Discriminant analysis</topic><topic>Leak detection</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Sensors</topic><topic>uncertainty</topic><topic>water</topic><topic>water distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Argote, Carlos Andrés</creatorcontrib><creatorcontrib>Begovich-Mendoza, Ofelia</creatorcontrib><creatorcontrib>Navarro-Díaz, Adrián</creatorcontrib><creatorcontrib>Santos-Ruiz, Ildeberto</creatorcontrib><creatorcontrib>Puig, Vicenç</creatorcontrib><creatorcontrib>Delgado-Aguiñaga, Jorge Alejandro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Argote, Carlos Andrés</au><au>Begovich-Mendoza, Ofelia</au><au>Navarro-Díaz, Adrián</au><au>Santos-Ruiz, Ildeberto</au><au>Puig, Vicenç</au><au>Delgado-Aguiñaga, Jorge Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers</atitle><jtitle>Water (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>15</volume><issue>17</issue><spage>3090</spage><pages>3090-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>In this paper, the two-simultaneous-leak isolation problem in water distribution networks is addressed. This methodology relies on optimal sensor placement together with a leak location strategy using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the water distribution network is proposed, aiming to reduce the computational cost that involves all possible combinations of two-leak scenarios. Each zone is composed of at least two consecutive nodes, which means that the number of zones is at most half the number of nodes. With this segmentation, the leak identification task is to locate the zones where the pair of leaks are occurring. To quantify the uncertainty degree, a relaxation node criterion is used. The simulation results evidenced that the outcomes are accurate in most cases by using one-relaxation-node and two-relaxation-node criteria.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15173090</doi><orcidid>https://orcid.org/0000-0002-0099-8822</orcidid><orcidid>https://orcid.org/0000-0003-3995-8091</orcidid><orcidid>https://orcid.org/0000-0003-3795-3246</orcidid><orcidid>https://orcid.org/0000-0002-6364-6429</orcidid><orcidid>https://orcid.org/0000-0001-8440-6048</orcidid><orcidid>https://orcid.org/0000-0002-9299-6102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2023-09, Vol.15 (17), p.3090 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153165494 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial intelligence Discriminant analysis Leak detection Methods Neural networks Sensors uncertainty water water distribution |
title | Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Leak%20Isolation%20in%20Water%20Distribution%20Networks%20Based%20on%20k-NN%20and%20Linear%20Discriminant%20Classifiers&rft.jtitle=Water%20(Basel)&rft.au=Rodr%C3%ADguez-Argote,%20Carlos%20Andr%C3%A9s&rft.date=2023-09-01&rft.volume=15&rft.issue=17&rft.spage=3090&rft.pages=3090-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15173090&rft_dat=%3Cgale_proqu%3EA764466441%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862718698&rft_id=info:pmid/&rft_galeid=A764466441&rfr_iscdi=true |