Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers

In this paper, the two-simultaneous-leak isolation problem in water distribution networks is addressed. This methodology relies on optimal sensor placement together with a leak location strategy using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the water d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2023-09, Vol.15 (17), p.3090
Hauptverfasser: Rodríguez-Argote, Carlos Andrés, Begovich-Mendoza, Ofelia, Navarro-Díaz, Adrián, Santos-Ruiz, Ildeberto, Puig, Vicenç, Delgado-Aguiñaga, Jorge Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 3090
container_title Water (Basel)
container_volume 15
creator Rodríguez-Argote, Carlos Andrés
Begovich-Mendoza, Ofelia
Navarro-Díaz, Adrián
Santos-Ruiz, Ildeberto
Puig, Vicenç
Delgado-Aguiñaga, Jorge Alejandro
description In this paper, the two-simultaneous-leak isolation problem in water distribution networks is addressed. This methodology relies on optimal sensor placement together with a leak location strategy using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the water distribution network is proposed, aiming to reduce the computational cost that involves all possible combinations of two-leak scenarios. Each zone is composed of at least two consecutive nodes, which means that the number of zones is at most half the number of nodes. With this segmentation, the leak identification task is to locate the zones where the pair of leaks are occurring. To quantify the uncertainty degree, a relaxation node criterion is used. The simulation results evidenced that the outcomes are accurate in most cases by using one-relaxation-node and two-relaxation-node criteria.
doi_str_mv 10.3390/w15173090
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153165494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764466441</galeid><sourcerecordid>A764466441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d804324511987d36b6eb49f198fbd0c1a654a81aaa37f0a9919def4d5496d6b73</originalsourceid><addsrcrecordid>eNpdkd9LwzAQx4soOOYe_A8CvuhDZ9KkafM4569BmS8TH8u1SSRbl8ykZfjfGzcRMUe4y5fP9zhySXJJ8JRSgW_3JCcFxQKfJKMMFzRljJHTP_V5MglhjeNhoixzPEra1d6llYINWgTXQW-cRcaiN-iVR_cm9N40w0Fdqn7v_CagOwhKoqhs0uUSgZWoMlbBAW-92RoLtkfzDkIw2igfLpIzDV1Qk588Tl4fH1bz57R6eVrMZ1XaUs76VJaY0YzlhIiykJQ3XDVM6PjSjcQtAZ4zKAkA0EJjEIIIqTSTORNc8qag4-T62Hfn3cegQl9v40Sq68AqN4SakpyS2ESwiF79Q9du8DZOV2clzwpSclFGanqk3qFTtbHa9R7aGFJtTeus0ibqs4IzxuMl0XBzNLTeheCVrnfxQ8B_1gTX3yuqf1dEvwAgzIFV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862718698</pqid></control><display><type>article</type><title>Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rodríguez-Argote, Carlos Andrés ; Begovich-Mendoza, Ofelia ; Navarro-Díaz, Adrián ; Santos-Ruiz, Ildeberto ; Puig, Vicenç ; Delgado-Aguiñaga, Jorge Alejandro</creator><creatorcontrib>Rodríguez-Argote, Carlos Andrés ; Begovich-Mendoza, Ofelia ; Navarro-Díaz, Adrián ; Santos-Ruiz, Ildeberto ; Puig, Vicenç ; Delgado-Aguiñaga, Jorge Alejandro</creatorcontrib><description>In this paper, the two-simultaneous-leak isolation problem in water distribution networks is addressed. This methodology relies on optimal sensor placement together with a leak location strategy using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the water distribution network is proposed, aiming to reduce the computational cost that involves all possible combinations of two-leak scenarios. Each zone is composed of at least two consecutive nodes, which means that the number of zones is at most half the number of nodes. With this segmentation, the leak identification task is to locate the zones where the pair of leaks are occurring. To quantify the uncertainty degree, a relaxation node criterion is used. The simulation results evidenced that the outcomes are accurate in most cases by using one-relaxation-node and two-relaxation-node criteria.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15173090</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Discriminant analysis ; Leak detection ; Methods ; Neural networks ; Sensors ; uncertainty ; water ; water distribution</subject><ispartof>Water (Basel), 2023-09, Vol.15 (17), p.3090</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-d804324511987d36b6eb49f198fbd0c1a654a81aaa37f0a9919def4d5496d6b73</citedby><cites>FETCH-LOGICAL-c364t-d804324511987d36b6eb49f198fbd0c1a654a81aaa37f0a9919def4d5496d6b73</cites><orcidid>0000-0002-0099-8822 ; 0000-0003-3995-8091 ; 0000-0003-3795-3246 ; 0000-0002-6364-6429 ; 0000-0001-8440-6048 ; 0000-0002-9299-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rodríguez-Argote, Carlos Andrés</creatorcontrib><creatorcontrib>Begovich-Mendoza, Ofelia</creatorcontrib><creatorcontrib>Navarro-Díaz, Adrián</creatorcontrib><creatorcontrib>Santos-Ruiz, Ildeberto</creatorcontrib><creatorcontrib>Puig, Vicenç</creatorcontrib><creatorcontrib>Delgado-Aguiñaga, Jorge Alejandro</creatorcontrib><title>Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers</title><title>Water (Basel)</title><description>In this paper, the two-simultaneous-leak isolation problem in water distribution networks is addressed. This methodology relies on optimal sensor placement together with a leak location strategy using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the water distribution network is proposed, aiming to reduce the computational cost that involves all possible combinations of two-leak scenarios. Each zone is composed of at least two consecutive nodes, which means that the number of zones is at most half the number of nodes. With this segmentation, the leak identification task is to locate the zones where the pair of leaks are occurring. To quantify the uncertainty degree, a relaxation node criterion is used. The simulation results evidenced that the outcomes are accurate in most cases by using one-relaxation-node and two-relaxation-node criteria.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Discriminant analysis</subject><subject>Leak detection</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Sensors</subject><subject>uncertainty</subject><subject>water</subject><subject>water distribution</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd9LwzAQx4soOOYe_A8CvuhDZ9KkafM4569BmS8TH8u1SSRbl8ykZfjfGzcRMUe4y5fP9zhySXJJ8JRSgW_3JCcFxQKfJKMMFzRljJHTP_V5MglhjeNhoixzPEra1d6llYINWgTXQW-cRcaiN-iVR_cm9N40w0Fdqn7v_CagOwhKoqhs0uUSgZWoMlbBAW-92RoLtkfzDkIw2igfLpIzDV1Qk588Tl4fH1bz57R6eVrMZ1XaUs76VJaY0YzlhIiykJQ3XDVM6PjSjcQtAZ4zKAkA0EJjEIIIqTSTORNc8qag4-T62Hfn3cegQl9v40Sq68AqN4SakpyS2ESwiF79Q9du8DZOV2clzwpSclFGanqk3qFTtbHa9R7aGFJtTeus0ibqs4IzxuMl0XBzNLTeheCVrnfxQ8B_1gTX3yuqf1dEvwAgzIFV</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Rodríguez-Argote, Carlos Andrés</creator><creator>Begovich-Mendoza, Ofelia</creator><creator>Navarro-Díaz, Adrián</creator><creator>Santos-Ruiz, Ildeberto</creator><creator>Puig, Vicenç</creator><creator>Delgado-Aguiñaga, Jorge Alejandro</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0099-8822</orcidid><orcidid>https://orcid.org/0000-0003-3995-8091</orcidid><orcidid>https://orcid.org/0000-0003-3795-3246</orcidid><orcidid>https://orcid.org/0000-0002-6364-6429</orcidid><orcidid>https://orcid.org/0000-0001-8440-6048</orcidid><orcidid>https://orcid.org/0000-0002-9299-6102</orcidid></search><sort><creationdate>20230901</creationdate><title>Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers</title><author>Rodríguez-Argote, Carlos Andrés ; Begovich-Mendoza, Ofelia ; Navarro-Díaz, Adrián ; Santos-Ruiz, Ildeberto ; Puig, Vicenç ; Delgado-Aguiñaga, Jorge Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d804324511987d36b6eb49f198fbd0c1a654a81aaa37f0a9919def4d5496d6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Discriminant analysis</topic><topic>Leak detection</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Sensors</topic><topic>uncertainty</topic><topic>water</topic><topic>water distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Argote, Carlos Andrés</creatorcontrib><creatorcontrib>Begovich-Mendoza, Ofelia</creatorcontrib><creatorcontrib>Navarro-Díaz, Adrián</creatorcontrib><creatorcontrib>Santos-Ruiz, Ildeberto</creatorcontrib><creatorcontrib>Puig, Vicenç</creatorcontrib><creatorcontrib>Delgado-Aguiñaga, Jorge Alejandro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Argote, Carlos Andrés</au><au>Begovich-Mendoza, Ofelia</au><au>Navarro-Díaz, Adrián</au><au>Santos-Ruiz, Ildeberto</au><au>Puig, Vicenç</au><au>Delgado-Aguiñaga, Jorge Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers</atitle><jtitle>Water (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>15</volume><issue>17</issue><spage>3090</spage><pages>3090-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>In this paper, the two-simultaneous-leak isolation problem in water distribution networks is addressed. This methodology relies on optimal sensor placement together with a leak location strategy using two well-known classifiers: k-NN and discriminant analysis. First, zone segmentation of the water distribution network is proposed, aiming to reduce the computational cost that involves all possible combinations of two-leak scenarios. Each zone is composed of at least two consecutive nodes, which means that the number of zones is at most half the number of nodes. With this segmentation, the leak identification task is to locate the zones where the pair of leaks are occurring. To quantify the uncertainty degree, a relaxation node criterion is used. The simulation results evidenced that the outcomes are accurate in most cases by using one-relaxation-node and two-relaxation-node criteria.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15173090</doi><orcidid>https://orcid.org/0000-0002-0099-8822</orcidid><orcidid>https://orcid.org/0000-0003-3995-8091</orcidid><orcidid>https://orcid.org/0000-0003-3795-3246</orcidid><orcidid>https://orcid.org/0000-0002-6364-6429</orcidid><orcidid>https://orcid.org/0000-0001-8440-6048</orcidid><orcidid>https://orcid.org/0000-0002-9299-6102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2023-09, Vol.15 (17), p.3090
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_miscellaneous_3153165494
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial intelligence
Discriminant analysis
Leak detection
Methods
Neural networks
Sensors
uncertainty
water
water distribution
title Two-Leak Isolation in Water Distribution Networks Based on k-NN and Linear Discriminant Classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Leak%20Isolation%20in%20Water%20Distribution%20Networks%20Based%20on%20k-NN%20and%20Linear%20Discriminant%20Classifiers&rft.jtitle=Water%20(Basel)&rft.au=Rodr%C3%ADguez-Argote,%20Carlos%20Andr%C3%A9s&rft.date=2023-09-01&rft.volume=15&rft.issue=17&rft.spage=3090&rft.pages=3090-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15173090&rft_dat=%3Cgale_proqu%3EA764466441%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862718698&rft_id=info:pmid/&rft_galeid=A764466441&rfr_iscdi=true