Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration

Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-04, Vol.16 (15), p.18658-18670
Hauptverfasser: Shen, Hui-Yuan, Xing, Fei, Shang, Si-Yuan, Jiang, Kai, Kuzmanović, Maja, Huang, Fu-Wen, Liu, Yao, Luo, En, Edeleva, Mariya, Cardon, Ludwig, Huang, Shishu, Xiang, Zhou, Xu, Jia-Zhuang, Li, Zhong-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18670
container_issue 15
container_start_page 18658
container_title ACS applied materials & interfaces
container_volume 16
creator Shen, Hui-Yuan
Xing, Fei
Shang, Si-Yuan
Jiang, Kai
Kuzmanović, Maja
Huang, Fu-Wen
Liu, Yao
Luo, En
Edeleva, Mariya
Cardon, Ludwig
Huang, Shishu
Xiang, Zhou
Xu, Jia-Zhuang
Li, Zhong-Ming
description Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.
doi_str_mv 10.1021/acsami.4c02636
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153162236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153162236</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-c36484ef962f3b5003da0545ec8745f43e0d9020aa8f5b5d4f70115526233d3b3</originalsourceid><addsrcrecordid>eNqFkc9vFCEUx4mxsbV69Wg4GpNZgQfs7HHb-qNJWxur5wkDj4aGGdaBMVlv_udls2tvRi68w-d93oMvIW84W3Am-AdjsxnCQlomNOhn5ISvpGxaocTzp1rKY_Iy5wfGNAimXpBjaFW7bDk_IX_OQhrCgCVYeh1GnEwMv9FRuGhupzCWWt6muLVmM6VobEkj0jtrvE_R0cvRzbYS_ZbeYfTN2plNCb-Q3pgxlbRJMd1vaUl0bS3G6i5Iz3aGb3iPu1klpPEVOfImZnx9uE_Jj08fv59_aa6-fr48X181BjSUxoKWrUS_0sJDrxgDZ5iSCm27lMpLQOZWTDBjWq965aRfMs6VEloAOOjhlLzbe-tLfs6YSzeEXNeKZsQ05w64Aq6FqNP-izKQy3p0W9HFHrVTynlC322mMJhp23HW7RLq9gl1h4Rqw9uDe-4HdE_430gq8H4P1MbuIc3TWH_lX7ZHCkybwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034777768</pqid></control><display><type>article</type><title>Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration</title><source>ACS Publications</source><creator>Shen, Hui-Yuan ; Xing, Fei ; Shang, Si-Yuan ; Jiang, Kai ; Kuzmanović, Maja ; Huang, Fu-Wen ; Liu, Yao ; Luo, En ; Edeleva, Mariya ; Cardon, Ludwig ; Huang, Shishu ; Xiang, Zhou ; Xu, Jia-Zhuang ; Li, Zhong-Ming</creator><creatorcontrib>Shen, Hui-Yuan ; Xing, Fei ; Shang, Si-Yuan ; Jiang, Kai ; Kuzmanović, Maja ; Huang, Fu-Wen ; Liu, Yao ; Luo, En ; Edeleva, Mariya ; Cardon, Ludwig ; Huang, Shishu ; Xiang, Zhou ; Xu, Jia-Zhuang ; Li, Zhong-Ming</creatorcontrib><description>Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c02636</identifier><identifier>PMID: 38587811</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>biodegradability ; Biological and Medical Applications of Materials and Interfaces ; biomimetics ; bone formation ; bones ; cell culture ; crystallization ; hydroxyapatite ; mice ; mineralization ; nanomaterials ; orthopedics ; osteoblasts ; polymers ; rabbits</subject><ispartof>ACS applied materials &amp; interfaces, 2024-04, Vol.16 (15), p.18658-18670</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a363t-c36484ef962f3b5003da0545ec8745f43e0d9020aa8f5b5d4f70115526233d3b3</citedby><cites>FETCH-LOGICAL-a363t-c36484ef962f3b5003da0545ec8745f43e0d9020aa8f5b5d4f70115526233d3b3</cites><orcidid>0000-0001-7203-1453 ; 0000-0002-4019-612X ; 0000-0001-9888-7014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c02636$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c02636$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38587811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Hui-Yuan</creatorcontrib><creatorcontrib>Xing, Fei</creatorcontrib><creatorcontrib>Shang, Si-Yuan</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Kuzmanović, Maja</creatorcontrib><creatorcontrib>Huang, Fu-Wen</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>Luo, En</creatorcontrib><creatorcontrib>Edeleva, Mariya</creatorcontrib><creatorcontrib>Cardon, Ludwig</creatorcontrib><creatorcontrib>Huang, Shishu</creatorcontrib><creatorcontrib>Xiang, Zhou</creatorcontrib><creatorcontrib>Xu, Jia-Zhuang</creatorcontrib><creatorcontrib>Li, Zhong-Ming</creatorcontrib><title>Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.</description><subject>biodegradability</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>biomimetics</subject><subject>bone formation</subject><subject>bones</subject><subject>cell culture</subject><subject>crystallization</subject><subject>hydroxyapatite</subject><subject>mice</subject><subject>mineralization</subject><subject>nanomaterials</subject><subject>orthopedics</subject><subject>osteoblasts</subject><subject>polymers</subject><subject>rabbits</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9vFCEUx4mxsbV69Wg4GpNZgQfs7HHb-qNJWxur5wkDj4aGGdaBMVlv_udls2tvRi68w-d93oMvIW84W3Am-AdjsxnCQlomNOhn5ISvpGxaocTzp1rKY_Iy5wfGNAimXpBjaFW7bDk_IX_OQhrCgCVYeh1GnEwMv9FRuGhupzCWWt6muLVmM6VobEkj0jtrvE_R0cvRzbYS_ZbeYfTN2plNCb-Q3pgxlbRJMd1vaUl0bS3G6i5Iz3aGb3iPu1klpPEVOfImZnx9uE_Jj08fv59_aa6-fr48X181BjSUxoKWrUS_0sJDrxgDZ5iSCm27lMpLQOZWTDBjWq965aRfMs6VEloAOOjhlLzbe-tLfs6YSzeEXNeKZsQ05w64Aq6FqNP-izKQy3p0W9HFHrVTynlC322mMJhp23HW7RLq9gl1h4Rqw9uDe-4HdE_430gq8H4P1MbuIc3TWH_lX7ZHCkybwg</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Shen, Hui-Yuan</creator><creator>Xing, Fei</creator><creator>Shang, Si-Yuan</creator><creator>Jiang, Kai</creator><creator>Kuzmanović, Maja</creator><creator>Huang, Fu-Wen</creator><creator>Liu, Yao</creator><creator>Luo, En</creator><creator>Edeleva, Mariya</creator><creator>Cardon, Ludwig</creator><creator>Huang, Shishu</creator><creator>Xiang, Zhou</creator><creator>Xu, Jia-Zhuang</creator><creator>Li, Zhong-Ming</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7203-1453</orcidid><orcidid>https://orcid.org/0000-0002-4019-612X</orcidid><orcidid>https://orcid.org/0000-0001-9888-7014</orcidid></search><sort><creationdate>20240417</creationdate><title>Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration</title><author>Shen, Hui-Yuan ; Xing, Fei ; Shang, Si-Yuan ; Jiang, Kai ; Kuzmanović, Maja ; Huang, Fu-Wen ; Liu, Yao ; Luo, En ; Edeleva, Mariya ; Cardon, Ludwig ; Huang, Shishu ; Xiang, Zhou ; Xu, Jia-Zhuang ; Li, Zhong-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-c36484ef962f3b5003da0545ec8745f43e0d9020aa8f5b5d4f70115526233d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biodegradability</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>biomimetics</topic><topic>bone formation</topic><topic>bones</topic><topic>cell culture</topic><topic>crystallization</topic><topic>hydroxyapatite</topic><topic>mice</topic><topic>mineralization</topic><topic>nanomaterials</topic><topic>orthopedics</topic><topic>osteoblasts</topic><topic>polymers</topic><topic>rabbits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Hui-Yuan</creatorcontrib><creatorcontrib>Xing, Fei</creatorcontrib><creatorcontrib>Shang, Si-Yuan</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Kuzmanović, Maja</creatorcontrib><creatorcontrib>Huang, Fu-Wen</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>Luo, En</creatorcontrib><creatorcontrib>Edeleva, Mariya</creatorcontrib><creatorcontrib>Cardon, Ludwig</creatorcontrib><creatorcontrib>Huang, Shishu</creatorcontrib><creatorcontrib>Xiang, Zhou</creatorcontrib><creatorcontrib>Xu, Jia-Zhuang</creatorcontrib><creatorcontrib>Li, Zhong-Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Hui-Yuan</au><au>Xing, Fei</au><au>Shang, Si-Yuan</au><au>Jiang, Kai</au><au>Kuzmanović, Maja</au><au>Huang, Fu-Wen</au><au>Liu, Yao</au><au>Luo, En</au><au>Edeleva, Mariya</au><au>Cardon, Ludwig</au><au>Huang, Shishu</au><au>Xiang, Zhou</au><au>Xu, Jia-Zhuang</au><au>Li, Zhong-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>18658</spage><epage>18670</epage><pages>18658-18670</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38587811</pmid><doi>10.1021/acsami.4c02636</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7203-1453</orcidid><orcidid>https://orcid.org/0000-0002-4019-612X</orcidid><orcidid>https://orcid.org/0000-0001-9888-7014</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-04, Vol.16 (15), p.18658-18670
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3153162236
source ACS Publications
subjects biodegradability
Biological and Medical Applications of Materials and Interfaces
biomimetics
bone formation
bones
cell culture
crystallization
hydroxyapatite
mice
mineralization
nanomaterials
orthopedics
osteoblasts
polymers
rabbits
title Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20Mineralized%203D-Printed%20Polycaprolactone%20Scaffold%20Induced%20by%20Self-Adaptive%20Nanotopology%20to%20Accelerate%20Bone%20Regeneration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Shen,%20Hui-Yuan&rft.date=2024-04-17&rft.volume=16&rft.issue=15&rft.spage=18658&rft.epage=18670&rft.pages=18658-18670&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c02636&rft_dat=%3Cproquest_cross%3E3153162236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034777768&rft_id=info:pmid/38587811&rfr_iscdi=true