Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration
Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomim...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-04, Vol.16 (15), p.18658-18670 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18670 |
---|---|
container_issue | 15 |
container_start_page | 18658 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Shen, Hui-Yuan Xing, Fei Shang, Si-Yuan Jiang, Kai Kuzmanović, Maja Huang, Fu-Wen Liu, Yao Luo, En Edeleva, Mariya Cardon, Ludwig Huang, Shishu Xiang, Zhou Xu, Jia-Zhuang Li, Zhong-Ming |
description | Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants. |
doi_str_mv | 10.1021/acsami.4c02636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153162236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153162236</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-c36484ef962f3b5003da0545ec8745f43e0d9020aa8f5b5d4f70115526233d3b3</originalsourceid><addsrcrecordid>eNqFkc9vFCEUx4mxsbV69Wg4GpNZgQfs7HHb-qNJWxur5wkDj4aGGdaBMVlv_udls2tvRi68w-d93oMvIW84W3Am-AdjsxnCQlomNOhn5ISvpGxaocTzp1rKY_Iy5wfGNAimXpBjaFW7bDk_IX_OQhrCgCVYeh1GnEwMv9FRuGhupzCWWt6muLVmM6VobEkj0jtrvE_R0cvRzbYS_ZbeYfTN2plNCb-Q3pgxlbRJMd1vaUl0bS3G6i5Iz3aGb3iPu1klpPEVOfImZnx9uE_Jj08fv59_aa6-fr48X181BjSUxoKWrUS_0sJDrxgDZ5iSCm27lMpLQOZWTDBjWq965aRfMs6VEloAOOjhlLzbe-tLfs6YSzeEXNeKZsQ05w64Aq6FqNP-izKQy3p0W9HFHrVTynlC322mMJhp23HW7RLq9gl1h4Rqw9uDe-4HdE_430gq8H4P1MbuIc3TWH_lX7ZHCkybwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034777768</pqid></control><display><type>article</type><title>Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration</title><source>ACS Publications</source><creator>Shen, Hui-Yuan ; Xing, Fei ; Shang, Si-Yuan ; Jiang, Kai ; Kuzmanović, Maja ; Huang, Fu-Wen ; Liu, Yao ; Luo, En ; Edeleva, Mariya ; Cardon, Ludwig ; Huang, Shishu ; Xiang, Zhou ; Xu, Jia-Zhuang ; Li, Zhong-Ming</creator><creatorcontrib>Shen, Hui-Yuan ; Xing, Fei ; Shang, Si-Yuan ; Jiang, Kai ; Kuzmanović, Maja ; Huang, Fu-Wen ; Liu, Yao ; Luo, En ; Edeleva, Mariya ; Cardon, Ludwig ; Huang, Shishu ; Xiang, Zhou ; Xu, Jia-Zhuang ; Li, Zhong-Ming</creatorcontrib><description>Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c02636</identifier><identifier>PMID: 38587811</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>biodegradability ; Biological and Medical Applications of Materials and Interfaces ; biomimetics ; bone formation ; bones ; cell culture ; crystallization ; hydroxyapatite ; mice ; mineralization ; nanomaterials ; orthopedics ; osteoblasts ; polymers ; rabbits</subject><ispartof>ACS applied materials & interfaces, 2024-04, Vol.16 (15), p.18658-18670</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a363t-c36484ef962f3b5003da0545ec8745f43e0d9020aa8f5b5d4f70115526233d3b3</citedby><cites>FETCH-LOGICAL-a363t-c36484ef962f3b5003da0545ec8745f43e0d9020aa8f5b5d4f70115526233d3b3</cites><orcidid>0000-0001-7203-1453 ; 0000-0002-4019-612X ; 0000-0001-9888-7014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c02636$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c02636$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38587811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Hui-Yuan</creatorcontrib><creatorcontrib>Xing, Fei</creatorcontrib><creatorcontrib>Shang, Si-Yuan</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Kuzmanović, Maja</creatorcontrib><creatorcontrib>Huang, Fu-Wen</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>Luo, En</creatorcontrib><creatorcontrib>Edeleva, Mariya</creatorcontrib><creatorcontrib>Cardon, Ludwig</creatorcontrib><creatorcontrib>Huang, Shishu</creatorcontrib><creatorcontrib>Xiang, Zhou</creatorcontrib><creatorcontrib>Xu, Jia-Zhuang</creatorcontrib><creatorcontrib>Li, Zhong-Ming</creatorcontrib><title>Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.</description><subject>biodegradability</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>biomimetics</subject><subject>bone formation</subject><subject>bones</subject><subject>cell culture</subject><subject>crystallization</subject><subject>hydroxyapatite</subject><subject>mice</subject><subject>mineralization</subject><subject>nanomaterials</subject><subject>orthopedics</subject><subject>osteoblasts</subject><subject>polymers</subject><subject>rabbits</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9vFCEUx4mxsbV69Wg4GpNZgQfs7HHb-qNJWxur5wkDj4aGGdaBMVlv_udls2tvRi68w-d93oMvIW84W3Am-AdjsxnCQlomNOhn5ISvpGxaocTzp1rKY_Iy5wfGNAimXpBjaFW7bDk_IX_OQhrCgCVYeh1GnEwMv9FRuGhupzCWWt6muLVmM6VobEkj0jtrvE_R0cvRzbYS_ZbeYfTN2plNCb-Q3pgxlbRJMd1vaUl0bS3G6i5Iz3aGb3iPu1klpPEVOfImZnx9uE_Jj08fv59_aa6-fr48X181BjSUxoKWrUS_0sJDrxgDZ5iSCm27lMpLQOZWTDBjWq965aRfMs6VEloAOOjhlLzbe-tLfs6YSzeEXNeKZsQ05w64Aq6FqNP-izKQy3p0W9HFHrVTynlC322mMJhp23HW7RLq9gl1h4Rqw9uDe-4HdE_430gq8H4P1MbuIc3TWH_lX7ZHCkybwg</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Shen, Hui-Yuan</creator><creator>Xing, Fei</creator><creator>Shang, Si-Yuan</creator><creator>Jiang, Kai</creator><creator>Kuzmanović, Maja</creator><creator>Huang, Fu-Wen</creator><creator>Liu, Yao</creator><creator>Luo, En</creator><creator>Edeleva, Mariya</creator><creator>Cardon, Ludwig</creator><creator>Huang, Shishu</creator><creator>Xiang, Zhou</creator><creator>Xu, Jia-Zhuang</creator><creator>Li, Zhong-Ming</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7203-1453</orcidid><orcidid>https://orcid.org/0000-0002-4019-612X</orcidid><orcidid>https://orcid.org/0000-0001-9888-7014</orcidid></search><sort><creationdate>20240417</creationdate><title>Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration</title><author>Shen, Hui-Yuan ; Xing, Fei ; Shang, Si-Yuan ; Jiang, Kai ; Kuzmanović, Maja ; Huang, Fu-Wen ; Liu, Yao ; Luo, En ; Edeleva, Mariya ; Cardon, Ludwig ; Huang, Shishu ; Xiang, Zhou ; Xu, Jia-Zhuang ; Li, Zhong-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-c36484ef962f3b5003da0545ec8745f43e0d9020aa8f5b5d4f70115526233d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biodegradability</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>biomimetics</topic><topic>bone formation</topic><topic>bones</topic><topic>cell culture</topic><topic>crystallization</topic><topic>hydroxyapatite</topic><topic>mice</topic><topic>mineralization</topic><topic>nanomaterials</topic><topic>orthopedics</topic><topic>osteoblasts</topic><topic>polymers</topic><topic>rabbits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Hui-Yuan</creatorcontrib><creatorcontrib>Xing, Fei</creatorcontrib><creatorcontrib>Shang, Si-Yuan</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Kuzmanović, Maja</creatorcontrib><creatorcontrib>Huang, Fu-Wen</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><creatorcontrib>Luo, En</creatorcontrib><creatorcontrib>Edeleva, Mariya</creatorcontrib><creatorcontrib>Cardon, Ludwig</creatorcontrib><creatorcontrib>Huang, Shishu</creatorcontrib><creatorcontrib>Xiang, Zhou</creatorcontrib><creatorcontrib>Xu, Jia-Zhuang</creatorcontrib><creatorcontrib>Li, Zhong-Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Hui-Yuan</au><au>Xing, Fei</au><au>Shang, Si-Yuan</au><au>Jiang, Kai</au><au>Kuzmanović, Maja</au><au>Huang, Fu-Wen</au><au>Liu, Yao</au><au>Luo, En</au><au>Edeleva, Mariya</au><au>Cardon, Ludwig</au><au>Huang, Shishu</au><au>Xiang, Zhou</au><au>Xu, Jia-Zhuang</au><au>Li, Zhong-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>18658</spage><epage>18670</epage><pages>18658-18670</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38587811</pmid><doi>10.1021/acsami.4c02636</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7203-1453</orcidid><orcidid>https://orcid.org/0000-0002-4019-612X</orcidid><orcidid>https://orcid.org/0000-0001-9888-7014</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-04, Vol.16 (15), p.18658-18670 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153162236 |
source | ACS Publications |
subjects | biodegradability Biological and Medical Applications of Materials and Interfaces biomimetics bone formation bones cell culture crystallization hydroxyapatite mice mineralization nanomaterials orthopedics osteoblasts polymers rabbits |
title | Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20Mineralized%203D-Printed%20Polycaprolactone%20Scaffold%20Induced%20by%20Self-Adaptive%20Nanotopology%20to%20Accelerate%20Bone%20Regeneration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Shen,%20Hui-Yuan&rft.date=2024-04-17&rft.volume=16&rft.issue=15&rft.spage=18658&rft.epage=18670&rft.pages=18658-18670&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c02636&rft_dat=%3Cproquest_cross%3E3153162236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034777768&rft_id=info:pmid/38587811&rfr_iscdi=true |