A Novel Algorithm for the Retrieval of Chlorophyll a in Marine Environments Using Deep Learning
Chlorophyll a (Chla) is a crucial pigment in phytoplankton, playing a vital role in determining phytoplankton biomass and water nutrient status. However, in optically complex water bodies, Chla concentration is no longer the primary factor influencing remote sensing spectral reflectance signals, lea...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2023-11, Vol.15 (21), p.3864 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 3864 |
container_title | Water (Basel) |
container_volume | 15 |
creator | Zeng, You Liang, Tianlong Fan, Donglin He, Hongchang |
description | Chlorophyll a (Chla) is a crucial pigment in phytoplankton, playing a vital role in determining phytoplankton biomass and water nutrient status. However, in optically complex water bodies, Chla concentration is no longer the primary factor influencing remote sensing spectral reflectance signals, leading to significant errors in traditional Chla concentration estimation methods. With advancements in in situ measurements, synchronized satellite data, and computer technology, machine learning algorithms have become popular in Chla concentration retrieval. Nevertheless, when using machine learning methods to estimate Chla concentration, abrupt changes in Chla values can disrupt the spatiotemporal smoothness of the retrieval results. Therefore, this study proposes a two-stage approach to enhance the accuracy of Chla concentration estimation in optically complex water bodies. In the first stage, a one-dimensional convolutional neural network (1D CNN) is employed for precise Chla retrieval, and in the second stage, the regression layer of the 1DCNN is replaced with support vector regression (SVR). The research findings are as follows: (1) In the first stage, the performance metrics (R2, RMSE, RMLSE, Bias, MAE) of the 1D CNN outperform state-of-the-art algorithms (OCI, SVR, RFR) on the test dataset. (2) After the second stage, the performance further improves, with the metrics achieving values of 0.892, 11.243, 0.052, 1.056, and 1.444, respectively. (3) In mid- to high-latitude regions, the inversion performance of 1D CNN\SVR is superior to other algorithms, exhibiting richer details and higher noise tolerance in nearshore areas. (4) 1D CNN\SVR demonstrates high inversion capabilities in water bodies with medium-to-high nutrient levels. |
doi_str_mv | 10.3390/w15213864 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153161086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772536994</galeid><sourcerecordid>A772536994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-656ad5e6e446b81acbb254d59264dff7ca286715b2b95d6d61da1332d99f97b83</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhhdRsKgH_0HAix6qm89NjqV-QlUQew7Z3Umbkk1qsq3037tSEXHmMB887zDwFsU5Lq8pVeXNJ-YEUynYQTEiZUXHjDF8-Kc_Ls5yXpVDMCUlL0eFnqCXuAWPJn4Rk-uXHbIxoX4J6A365GBrPIoWTZc-prhe7rxHBrmAnk1yAdBd2LoUQwehz2ieXVigW4A1moFJYZhOiyNrfIazn3pSzO_v3qeP49nrw9N0Mhs3lLB-LLgwLQcBjIlaYtPUNeGs5YoI1lpbNYZIUWFek1rxVrQCtwZTSlqlrKpqSU-Ky_3ddYofG8i97lxuwHsTIG6ypphTLHApxYBe_ENXcZPC8J0mUkrKZcnVQF3vqYXxoF2wsU-mGbKFzjUxgHXDflJVhFOhFBsEV3tBk2LOCaxeJ9eZtNO41N_26F976BfmRn_7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888358059</pqid></control><display><type>article</type><title>A Novel Algorithm for the Retrieval of Chlorophyll a in Marine Environments Using Deep Learning</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Zeng, You ; Liang, Tianlong ; Fan, Donglin ; He, Hongchang</creator><creatorcontrib>Zeng, You ; Liang, Tianlong ; Fan, Donglin ; He, Hongchang</creatorcontrib><description>Chlorophyll a (Chla) is a crucial pigment in phytoplankton, playing a vital role in determining phytoplankton biomass and water nutrient status. However, in optically complex water bodies, Chla concentration is no longer the primary factor influencing remote sensing spectral reflectance signals, leading to significant errors in traditional Chla concentration estimation methods. With advancements in in situ measurements, synchronized satellite data, and computer technology, machine learning algorithms have become popular in Chla concentration retrieval. Nevertheless, when using machine learning methods to estimate Chla concentration, abrupt changes in Chla values can disrupt the spatiotemporal smoothness of the retrieval results. Therefore, this study proposes a two-stage approach to enhance the accuracy of Chla concentration estimation in optically complex water bodies. In the first stage, a one-dimensional convolutional neural network (1D CNN) is employed for precise Chla retrieval, and in the second stage, the regression layer of the 1DCNN is replaced with support vector regression (SVR). The research findings are as follows: (1) In the first stage, the performance metrics (R2, RMSE, RMLSE, Bias, MAE) of the 1D CNN outperform state-of-the-art algorithms (OCI, SVR, RFR) on the test dataset. (2) After the second stage, the performance further improves, with the metrics achieving values of 0.892, 11.243, 0.052, 1.056, and 1.444, respectively. (3) In mid- to high-latitude regions, the inversion performance of 1D CNN\SVR is superior to other algorithms, exhibiting richer details and higher noise tolerance in nearshore areas. (4) 1D CNN\SVR demonstrates high inversion capabilities in water bodies with medium-to-high nutrient levels.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15213864</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Air pollution ; Algorithms ; biomass ; Chlorophyll ; Climate change ; computers ; data collection ; Datasets ; Deep learning ; Eutrophication ; latitude ; Machine learning ; Methods ; Neural networks ; Photosynthesis ; phytoplankton ; Plankton ; reflectance ; regression analysis ; Remote sensing ; Sensors ; water ; Water quality</subject><ispartof>Water (Basel), 2023-11, Vol.15 (21), p.3864</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-656ad5e6e446b81acbb254d59264dff7ca286715b2b95d6d61da1332d99f97b83</cites><orcidid>0000-0002-2100-6634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeng, You</creatorcontrib><creatorcontrib>Liang, Tianlong</creatorcontrib><creatorcontrib>Fan, Donglin</creatorcontrib><creatorcontrib>He, Hongchang</creatorcontrib><title>A Novel Algorithm for the Retrieval of Chlorophyll a in Marine Environments Using Deep Learning</title><title>Water (Basel)</title><description>Chlorophyll a (Chla) is a crucial pigment in phytoplankton, playing a vital role in determining phytoplankton biomass and water nutrient status. However, in optically complex water bodies, Chla concentration is no longer the primary factor influencing remote sensing spectral reflectance signals, leading to significant errors in traditional Chla concentration estimation methods. With advancements in in situ measurements, synchronized satellite data, and computer technology, machine learning algorithms have become popular in Chla concentration retrieval. Nevertheless, when using machine learning methods to estimate Chla concentration, abrupt changes in Chla values can disrupt the spatiotemporal smoothness of the retrieval results. Therefore, this study proposes a two-stage approach to enhance the accuracy of Chla concentration estimation in optically complex water bodies. In the first stage, a one-dimensional convolutional neural network (1D CNN) is employed for precise Chla retrieval, and in the second stage, the regression layer of the 1DCNN is replaced with support vector regression (SVR). The research findings are as follows: (1) In the first stage, the performance metrics (R2, RMSE, RMLSE, Bias, MAE) of the 1D CNN outperform state-of-the-art algorithms (OCI, SVR, RFR) on the test dataset. (2) After the second stage, the performance further improves, with the metrics achieving values of 0.892, 11.243, 0.052, 1.056, and 1.444, respectively. (3) In mid- to high-latitude regions, the inversion performance of 1D CNN\SVR is superior to other algorithms, exhibiting richer details and higher noise tolerance in nearshore areas. (4) 1D CNN\SVR demonstrates high inversion capabilities in water bodies with medium-to-high nutrient levels.</description><subject>Accuracy</subject><subject>Air pollution</subject><subject>Algorithms</subject><subject>biomass</subject><subject>Chlorophyll</subject><subject>Climate change</subject><subject>computers</subject><subject>data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Eutrophication</subject><subject>latitude</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Photosynthesis</subject><subject>phytoplankton</subject><subject>Plankton</subject><subject>reflectance</subject><subject>regression analysis</subject><subject>Remote sensing</subject><subject>Sensors</subject><subject>water</subject><subject>Water quality</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1LAzEQhhdRsKgH_0HAix6qm89NjqV-QlUQew7Z3Umbkk1qsq3037tSEXHmMB887zDwFsU5Lq8pVeXNJ-YEUynYQTEiZUXHjDF8-Kc_Ls5yXpVDMCUlL0eFnqCXuAWPJn4Rk-uXHbIxoX4J6A365GBrPIoWTZc-prhe7rxHBrmAnk1yAdBd2LoUQwehz2ieXVigW4A1moFJYZhOiyNrfIazn3pSzO_v3qeP49nrw9N0Mhs3lLB-LLgwLQcBjIlaYtPUNeGs5YoI1lpbNYZIUWFek1rxVrQCtwZTSlqlrKpqSU-Ky_3ddYofG8i97lxuwHsTIG6ypphTLHApxYBe_ENXcZPC8J0mUkrKZcnVQF3vqYXxoF2wsU-mGbKFzjUxgHXDflJVhFOhFBsEV3tBk2LOCaxeJ9eZtNO41N_26F976BfmRn_7</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zeng, You</creator><creator>Liang, Tianlong</creator><creator>Fan, Donglin</creator><creator>He, Hongchang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2100-6634</orcidid></search><sort><creationdate>20231101</creationdate><title>A Novel Algorithm for the Retrieval of Chlorophyll a in Marine Environments Using Deep Learning</title><author>Zeng, You ; Liang, Tianlong ; Fan, Donglin ; He, Hongchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-656ad5e6e446b81acbb254d59264dff7ca286715b2b95d6d61da1332d99f97b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Air pollution</topic><topic>Algorithms</topic><topic>biomass</topic><topic>Chlorophyll</topic><topic>Climate change</topic><topic>computers</topic><topic>data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Eutrophication</topic><topic>latitude</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Photosynthesis</topic><topic>phytoplankton</topic><topic>Plankton</topic><topic>reflectance</topic><topic>regression analysis</topic><topic>Remote sensing</topic><topic>Sensors</topic><topic>water</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, You</creatorcontrib><creatorcontrib>Liang, Tianlong</creatorcontrib><creatorcontrib>Fan, Donglin</creatorcontrib><creatorcontrib>He, Hongchang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, You</au><au>Liang, Tianlong</au><au>Fan, Donglin</au><au>He, Hongchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Algorithm for the Retrieval of Chlorophyll a in Marine Environments Using Deep Learning</atitle><jtitle>Water (Basel)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>21</issue><spage>3864</spage><pages>3864-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Chlorophyll a (Chla) is a crucial pigment in phytoplankton, playing a vital role in determining phytoplankton biomass and water nutrient status. However, in optically complex water bodies, Chla concentration is no longer the primary factor influencing remote sensing spectral reflectance signals, leading to significant errors in traditional Chla concentration estimation methods. With advancements in in situ measurements, synchronized satellite data, and computer technology, machine learning algorithms have become popular in Chla concentration retrieval. Nevertheless, when using machine learning methods to estimate Chla concentration, abrupt changes in Chla values can disrupt the spatiotemporal smoothness of the retrieval results. Therefore, this study proposes a two-stage approach to enhance the accuracy of Chla concentration estimation in optically complex water bodies. In the first stage, a one-dimensional convolutional neural network (1D CNN) is employed for precise Chla retrieval, and in the second stage, the regression layer of the 1DCNN is replaced with support vector regression (SVR). The research findings are as follows: (1) In the first stage, the performance metrics (R2, RMSE, RMLSE, Bias, MAE) of the 1D CNN outperform state-of-the-art algorithms (OCI, SVR, RFR) on the test dataset. (2) After the second stage, the performance further improves, with the metrics achieving values of 0.892, 11.243, 0.052, 1.056, and 1.444, respectively. (3) In mid- to high-latitude regions, the inversion performance of 1D CNN\SVR is superior to other algorithms, exhibiting richer details and higher noise tolerance in nearshore areas. (4) 1D CNN\SVR demonstrates high inversion capabilities in water bodies with medium-to-high nutrient levels.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15213864</doi><orcidid>https://orcid.org/0000-0002-2100-6634</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2023-11, Vol.15 (21), p.3864 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153161086 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Free E-Journal (出版社公開部分のみ) |
subjects | Accuracy Air pollution Algorithms biomass Chlorophyll Climate change computers data collection Datasets Deep learning Eutrophication latitude Machine learning Methods Neural networks Photosynthesis phytoplankton Plankton reflectance regression analysis Remote sensing Sensors water Water quality |
title | A Novel Algorithm for the Retrieval of Chlorophyll a in Marine Environments Using Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Algorithm%20for%20the%20Retrieval%20of%20Chlorophyll%20a%20in%20Marine%20Environments%20Using%20Deep%20Learning&rft.jtitle=Water%20(Basel)&rft.au=Zeng,%20You&rft.date=2023-11-01&rft.volume=15&rft.issue=21&rft.spage=3864&rft.pages=3864-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15213864&rft_dat=%3Cgale_proqu%3EA772536994%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2888358059&rft_id=info:pmid/&rft_galeid=A772536994&rfr_iscdi=true |