Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping
Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE sys...
Gespeichert in:
Veröffentlicht in: | In vitro cellular & developmental biology. Animal 2023-04, Vol.59 (4), p.241-255 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 4 |
container_start_page | 241 |
container_title | In vitro cellular & developmental biology. Animal |
container_volume | 59 |
creator | Yang, Shuai-peng Zhu, Xiang-xing Qu, Zi-xiao Chen, Cai-yue Wu, Yao-bing Wu, Yue Luo, Zi-dan Wang, Xin-yi He, Chu-yu Fang, Jia-wen Wang, Ling-qi Hong, Guang-long Zheng, Shu-tao Zeng, Jie-mei Yan, Ai-fen Feng, Juan Liu, Lian Zhang, Xiao-li Zhang, Li-gang Miao, Kai Tang, Dong-sheng |
description | Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5′ end splice donor and 3′ end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a
MSTN
knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous
CD163
,
IGF2
, and
MSTN
in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5′-GT) of intron 2 of the porcine
MSTN
gene. A porcine single-cell clone carrying a homozygous mutation (5′-GC) in the conserved sequence (5′-GT) of the intron 2 splice donor of the
MSTN
gene was successfully generated after drug selection. Unfortunately, the
MSTN
gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine
MSTN
gene, which may provide a new strategy for gene knockout in pigs. |
doi_str_mv | 10.1007/s11626-023-00763-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153160221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821959856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-edfda9f0c09f928224fd7b62a06e62bd6f593f354b2fd25979dec8c1853619383</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMovv-ACym4cRO9SZq0WYr4gvEBjiC4CG0eUmemqUkL-u_NOKOCC80mNyffPXkchPYIHBGA4jgSIqjAQBlOS8EwX0GbhOcMFyAeV1MNBcFUSNhAWzG-QBqSiHW0wQqQkhRyEz3dBW8G3Te-zbzLru_HN9mk9Xrihz7rfNBNazNtp9OYDbFpn7PK2Hau1VW02JqmTyKepaLqrcnsW_KJk6brkryD1lw1jXZ3OW-jh_Oz8eklHt1eXJ2ejLDOoeyTiTOVdKBBOklLSnNnilrQCoQVtDbCcckc43lNnaFcFtJYXWpSciaIZCXbRocL3y7418HGXs2aOL9z1Vo_RMUIZ0QApeRflJYgcl5I4Ak9-IW--CG06SGJokRyWXKRKLqgdPAxButUF5pZFd4VATVPSS1SUikl9ZmSmlvvL62HOn3dd8tXLAlgCyCmrfbZhp-z_7D9AIZEnFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821959856</pqid></control><display><type>article</type><title>Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Yang, Shuai-peng ; Zhu, Xiang-xing ; Qu, Zi-xiao ; Chen, Cai-yue ; Wu, Yao-bing ; Wu, Yue ; Luo, Zi-dan ; Wang, Xin-yi ; He, Chu-yu ; Fang, Jia-wen ; Wang, Ling-qi ; Hong, Guang-long ; Zheng, Shu-tao ; Zeng, Jie-mei ; Yan, Ai-fen ; Feng, Juan ; Liu, Lian ; Zhang, Xiao-li ; Zhang, Li-gang ; Miao, Kai ; Tang, Dong-sheng</creator><creatorcontrib>Yang, Shuai-peng ; Zhu, Xiang-xing ; Qu, Zi-xiao ; Chen, Cai-yue ; Wu, Yao-bing ; Wu, Yue ; Luo, Zi-dan ; Wang, Xin-yi ; He, Chu-yu ; Fang, Jia-wen ; Wang, Ling-qi ; Hong, Guang-long ; Zheng, Shu-tao ; Zeng, Jie-mei ; Yan, Ai-fen ; Feng, Juan ; Liu, Lian ; Zhang, Xiao-li ; Zhang, Li-gang ; Miao, Kai ; Tang, Dong-sheng</creatorcontrib><description>Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5′ end splice donor and 3′ end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a
MSTN
knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous
CD163
,
IGF2
, and
MSTN
in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5′-GT) of intron 2 of the porcine
MSTN
gene. A porcine single-cell clone carrying a homozygous mutation (5′-GC) in the conserved sequence (5′-GT) of the intron 2 splice donor of the
MSTN
gene was successfully generated after drug selection. Unfortunately, the
MSTN
gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine
MSTN
gene, which may provide a new strategy for gene knockout in pigs.</description><identifier>ISSN: 1071-2690</identifier><identifier>EISSN: 1543-706X</identifier><identifier>DOI: 10.1007/s11626-023-00763-5</identifier><identifier>PMID: 37099179</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adenine ; Alternative splicing ; Animal Genetics and Genomics ; Animals ; Antisense therapy ; Biomedical and Life Sciences ; CD163 antigen ; Cell Biology ; Cell Culture ; Conserved sequence ; CRISPR ; CRISPR-Cas systems ; Cytosine ; Developmental Biology ; drugs ; Editing ; Eukaryotes ; eukaryotic cells ; Exon skipping ; exons ; Exons - genetics ; Frameshift mutation ; Gene Editing ; Gene Knockout Techniques ; Gene sequencing ; gene targeting ; Genetic modification ; genomics ; Hogs ; homozygosity ; Inactivation ; Insulin-like growth factor II ; Introns ; Life Sciences ; medicine ; mRNA ; MSTN gene ; Mutation ; plasmids ; Proteins ; Stem Cells ; Swine ; Thymine</subject><ispartof>In vitro cellular & developmental biology. Animal, 2023-04, Vol.59 (4), p.241-255</ispartof><rights>The Society for In Vitro Biology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Society for In Vitro Biology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-edfda9f0c09f928224fd7b62a06e62bd6f593f354b2fd25979dec8c1853619383</citedby><cites>FETCH-LOGICAL-c408t-edfda9f0c09f928224fd7b62a06e62bd6f593f354b2fd25979dec8c1853619383</cites><orcidid>0000-0002-5265-2620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11626-023-00763-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11626-023-00763-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37099179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Shuai-peng</creatorcontrib><creatorcontrib>Zhu, Xiang-xing</creatorcontrib><creatorcontrib>Qu, Zi-xiao</creatorcontrib><creatorcontrib>Chen, Cai-yue</creatorcontrib><creatorcontrib>Wu, Yao-bing</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Luo, Zi-dan</creatorcontrib><creatorcontrib>Wang, Xin-yi</creatorcontrib><creatorcontrib>He, Chu-yu</creatorcontrib><creatorcontrib>Fang, Jia-wen</creatorcontrib><creatorcontrib>Wang, Ling-qi</creatorcontrib><creatorcontrib>Hong, Guang-long</creatorcontrib><creatorcontrib>Zheng, Shu-tao</creatorcontrib><creatorcontrib>Zeng, Jie-mei</creatorcontrib><creatorcontrib>Yan, Ai-fen</creatorcontrib><creatorcontrib>Feng, Juan</creatorcontrib><creatorcontrib>Liu, Lian</creatorcontrib><creatorcontrib>Zhang, Xiao-li</creatorcontrib><creatorcontrib>Zhang, Li-gang</creatorcontrib><creatorcontrib>Miao, Kai</creatorcontrib><creatorcontrib>Tang, Dong-sheng</creatorcontrib><title>Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping</title><title>In vitro cellular & developmental biology. Animal</title><addtitle>In Vitro Cell.Dev.Biol.-Animal</addtitle><addtitle>In Vitro Cell Dev Biol Anim</addtitle><description>Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5′ end splice donor and 3′ end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a
MSTN
knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous
CD163
,
IGF2
, and
MSTN
in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5′-GT) of intron 2 of the porcine
MSTN
gene. A porcine single-cell clone carrying a homozygous mutation (5′-GC) in the conserved sequence (5′-GT) of the intron 2 splice donor of the
MSTN
gene was successfully generated after drug selection. Unfortunately, the
MSTN
gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine
MSTN
gene, which may provide a new strategy for gene knockout in pigs.</description><subject>Adenine</subject><subject>Alternative splicing</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Antisense therapy</subject><subject>Biomedical and Life Sciences</subject><subject>CD163 antigen</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Conserved sequence</subject><subject>CRISPR</subject><subject>CRISPR-Cas systems</subject><subject>Cytosine</subject><subject>Developmental Biology</subject><subject>drugs</subject><subject>Editing</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Exon skipping</subject><subject>exons</subject><subject>Exons - genetics</subject><subject>Frameshift mutation</subject><subject>Gene Editing</subject><subject>Gene Knockout Techniques</subject><subject>Gene sequencing</subject><subject>gene targeting</subject><subject>Genetic modification</subject><subject>genomics</subject><subject>Hogs</subject><subject>homozygosity</subject><subject>Inactivation</subject><subject>Insulin-like growth factor II</subject><subject>Introns</subject><subject>Life Sciences</subject><subject>medicine</subject><subject>mRNA</subject><subject>MSTN gene</subject><subject>Mutation</subject><subject>plasmids</subject><subject>Proteins</subject><subject>Stem Cells</subject><subject>Swine</subject><subject>Thymine</subject><issn>1071-2690</issn><issn>1543-706X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMovv-ACym4cRO9SZq0WYr4gvEBjiC4CG0eUmemqUkL-u_NOKOCC80mNyffPXkchPYIHBGA4jgSIqjAQBlOS8EwX0GbhOcMFyAeV1MNBcFUSNhAWzG-QBqSiHW0wQqQkhRyEz3dBW8G3Te-zbzLru_HN9mk9Xrihz7rfNBNazNtp9OYDbFpn7PK2Hau1VW02JqmTyKepaLqrcnsW_KJk6brkryD1lw1jXZ3OW-jh_Oz8eklHt1eXJ2ejLDOoeyTiTOVdKBBOklLSnNnilrQCoQVtDbCcckc43lNnaFcFtJYXWpSciaIZCXbRocL3y7418HGXs2aOL9z1Vo_RMUIZ0QApeRflJYgcl5I4Ak9-IW--CG06SGJokRyWXKRKLqgdPAxButUF5pZFd4VATVPSS1SUikl9ZmSmlvvL62HOn3dd8tXLAlgCyCmrfbZhp-z_7D9AIZEnFo</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Yang, Shuai-peng</creator><creator>Zhu, Xiang-xing</creator><creator>Qu, Zi-xiao</creator><creator>Chen, Cai-yue</creator><creator>Wu, Yao-bing</creator><creator>Wu, Yue</creator><creator>Luo, Zi-dan</creator><creator>Wang, Xin-yi</creator><creator>He, Chu-yu</creator><creator>Fang, Jia-wen</creator><creator>Wang, Ling-qi</creator><creator>Hong, Guang-long</creator><creator>Zheng, Shu-tao</creator><creator>Zeng, Jie-mei</creator><creator>Yan, Ai-fen</creator><creator>Feng, Juan</creator><creator>Liu, Lian</creator><creator>Zhang, Xiao-li</creator><creator>Zhang, Li-gang</creator><creator>Miao, Kai</creator><creator>Tang, Dong-sheng</creator><general>Springer US</general><general>Society for In Vitro Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5265-2620</orcidid></search><sort><creationdate>20230401</creationdate><title>Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping</title><author>Yang, Shuai-peng ; Zhu, Xiang-xing ; Qu, Zi-xiao ; Chen, Cai-yue ; Wu, Yao-bing ; Wu, Yue ; Luo, Zi-dan ; Wang, Xin-yi ; He, Chu-yu ; Fang, Jia-wen ; Wang, Ling-qi ; Hong, Guang-long ; Zheng, Shu-tao ; Zeng, Jie-mei ; Yan, Ai-fen ; Feng, Juan ; Liu, Lian ; Zhang, Xiao-li ; Zhang, Li-gang ; Miao, Kai ; Tang, Dong-sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-edfda9f0c09f928224fd7b62a06e62bd6f593f354b2fd25979dec8c1853619383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenine</topic><topic>Alternative splicing</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Antisense therapy</topic><topic>Biomedical and Life Sciences</topic><topic>CD163 antigen</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Conserved sequence</topic><topic>CRISPR</topic><topic>CRISPR-Cas systems</topic><topic>Cytosine</topic><topic>Developmental Biology</topic><topic>drugs</topic><topic>Editing</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Exon skipping</topic><topic>exons</topic><topic>Exons - genetics</topic><topic>Frameshift mutation</topic><topic>Gene Editing</topic><topic>Gene Knockout Techniques</topic><topic>Gene sequencing</topic><topic>gene targeting</topic><topic>Genetic modification</topic><topic>genomics</topic><topic>Hogs</topic><topic>homozygosity</topic><topic>Inactivation</topic><topic>Insulin-like growth factor II</topic><topic>Introns</topic><topic>Life Sciences</topic><topic>medicine</topic><topic>mRNA</topic><topic>MSTN gene</topic><topic>Mutation</topic><topic>plasmids</topic><topic>Proteins</topic><topic>Stem Cells</topic><topic>Swine</topic><topic>Thymine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shuai-peng</creatorcontrib><creatorcontrib>Zhu, Xiang-xing</creatorcontrib><creatorcontrib>Qu, Zi-xiao</creatorcontrib><creatorcontrib>Chen, Cai-yue</creatorcontrib><creatorcontrib>Wu, Yao-bing</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Luo, Zi-dan</creatorcontrib><creatorcontrib>Wang, Xin-yi</creatorcontrib><creatorcontrib>He, Chu-yu</creatorcontrib><creatorcontrib>Fang, Jia-wen</creatorcontrib><creatorcontrib>Wang, Ling-qi</creatorcontrib><creatorcontrib>Hong, Guang-long</creatorcontrib><creatorcontrib>Zheng, Shu-tao</creatorcontrib><creatorcontrib>Zeng, Jie-mei</creatorcontrib><creatorcontrib>Yan, Ai-fen</creatorcontrib><creatorcontrib>Feng, Juan</creatorcontrib><creatorcontrib>Liu, Lian</creatorcontrib><creatorcontrib>Zhang, Xiao-li</creatorcontrib><creatorcontrib>Zhang, Li-gang</creatorcontrib><creatorcontrib>Miao, Kai</creatorcontrib><creatorcontrib>Tang, Dong-sheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>In vitro cellular & developmental biology. Animal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shuai-peng</au><au>Zhu, Xiang-xing</au><au>Qu, Zi-xiao</au><au>Chen, Cai-yue</au><au>Wu, Yao-bing</au><au>Wu, Yue</au><au>Luo, Zi-dan</au><au>Wang, Xin-yi</au><au>He, Chu-yu</au><au>Fang, Jia-wen</au><au>Wang, Ling-qi</au><au>Hong, Guang-long</au><au>Zheng, Shu-tao</au><au>Zeng, Jie-mei</au><au>Yan, Ai-fen</au><au>Feng, Juan</au><au>Liu, Lian</au><au>Zhang, Xiao-li</au><au>Zhang, Li-gang</au><au>Miao, Kai</au><au>Tang, Dong-sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping</atitle><jtitle>In vitro cellular & developmental biology. Animal</jtitle><stitle>In Vitro Cell.Dev.Biol.-Animal</stitle><addtitle>In Vitro Cell Dev Biol Anim</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>59</volume><issue>4</issue><spage>241</spage><epage>255</epage><pages>241-255</pages><issn>1071-2690</issn><eissn>1543-706X</eissn><abstract>Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5′ end splice donor and 3′ end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a
MSTN
knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous
CD163
,
IGF2
, and
MSTN
in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5′-GT) of intron 2 of the porcine
MSTN
gene. A porcine single-cell clone carrying a homozygous mutation (5′-GC) in the conserved sequence (5′-GT) of the intron 2 splice donor of the
MSTN
gene was successfully generated after drug selection. Unfortunately, the
MSTN
gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine
MSTN
gene, which may provide a new strategy for gene knockout in pigs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37099179</pmid><doi>10.1007/s11626-023-00763-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5265-2620</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1071-2690 |
ispartof | In vitro cellular & developmental biology. Animal, 2023-04, Vol.59 (4), p.241-255 |
issn | 1071-2690 1543-706X |
language | eng |
recordid | cdi_proquest_miscellaneous_3153160221 |
source | MEDLINE; SpringerLink Journals |
subjects | Adenine Alternative splicing Animal Genetics and Genomics Animals Antisense therapy Biomedical and Life Sciences CD163 antigen Cell Biology Cell Culture Conserved sequence CRISPR CRISPR-Cas systems Cytosine Developmental Biology drugs Editing Eukaryotes eukaryotic cells Exon skipping exons Exons - genetics Frameshift mutation Gene Editing Gene Knockout Techniques Gene sequencing gene targeting Genetic modification genomics Hogs homozygosity Inactivation Insulin-like growth factor II Introns Life Sciences medicine mRNA MSTN gene Mutation plasmids Proteins Stem Cells Swine Thymine |
title | Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20MSTN%20knockout%20porcine%20cells%20using%20adenine%20base-editing-mediated%20exon%20skipping&rft.jtitle=In%20vitro%20cellular%20&%20developmental%20biology.%20Animal&rft.au=Yang,%20Shuai-peng&rft.date=2023-04-01&rft.volume=59&rft.issue=4&rft.spage=241&rft.epage=255&rft.pages=241-255&rft.issn=1071-2690&rft.eissn=1543-706X&rft_id=info:doi/10.1007/s11626-023-00763-5&rft_dat=%3Cproquest_cross%3E2821959856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821959856&rft_id=info:pmid/37099179&rfr_iscdi=true |