Catalytically enhanced direct degradation of nitro-based antibacterial agents using dielectric barrier discharge cold atmospheric pressure plasma and rhenium nanoparticles

The common utilization of antimicrobial agents in medicine and veterinary creates serious problems with multidrug resistance spreading among pathogens. Bearing this in mind, wastewaters have to be completely purified from antimicrobial agents. In this context, a dielectric barrier discharge cold atm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2023-08, Vol.231 (Pt 3), p.116297-116297, Article 116297
Hauptverfasser: Khan, Mujahid Ameen, Dzimitrowicz, Anna, Caban, Magda, Jamroz, Piotr, Terefinko, Dominik, Tylus, Włodzimierz, Pohl, Pawel, Cyganowski, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116297
container_issue Pt 3
container_start_page 116297
container_title Environmental research
container_volume 231
creator Khan, Mujahid Ameen
Dzimitrowicz, Anna
Caban, Magda
Jamroz, Piotr
Terefinko, Dominik
Tylus, Włodzimierz
Pohl, Pawel
Cyganowski, Piotr
description The common utilization of antimicrobial agents in medicine and veterinary creates serious problems with multidrug resistance spreading among pathogens. Bearing this in mind, wastewaters have to be completely purified from antimicrobial agents. In this context, a dielectric barrier discharge cold atmospheric pressure plasma (DBD-CAPP) system was used in the present study as a multifunctional tool for the deactivation of nitro-based pharmacuticals such as furazolidone (FRz) and chloramphenicol (ChRP) in solutions. A direct approach was applied to this by treating solutions of the studied drugs by DBD-CAPP in the presence of the ReO4− ions. It was found that Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), generated in the DBD-CAPP-treated liquid, played a dual role in the process. On the one hand, ROS and RNS led to the direct degradation of FRz and ChRP, and on the other hand, they enabled the production of Re nanoparticles (ReNPs). The produced in this manner ReNPs consisted of catalytically active Re+4, Re+6, and Re+7 species which allowed the reduction of –NO2 groups contained in the FRz and ChRP. Unlike the DBD-CAPP, the catalytically enhanced DBD-CAPP led to almost FRz and ChRP removals from studied solutions. The catalytic boost was particularly highlighted when catalyst/DBD-CAPP was operated in the synthetic waste matrix. Re-active sites in this scenario led to the facilitated deactivation of antibiotics, achieving significantly higher FRz and ChRP removals than DBD-CAPP on its own. •A unique catalytic-reaction-discharge system was proposed.•The system combined dielectric barrier discharge and rhenium nanoparticles.•A simultaneous decomposition and reduction of antimicrobial agents were observed.•Catalytic boost enabled removal of Furazolidone and Chloramphenicol from wastewater.
doi_str_mv 10.1016/j.envres.2023.116297
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153158388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013935123011015</els_id><sourcerecordid>3153158388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-3aa02fd8f9a239160e833f37c410697fc27849fd5328ba9c978eb625edde7ffa3</originalsourceid><addsrcrecordid>eNqFkcuKFDEUhoMoTjv6BiJZuqk2l7plI0gzXmDAja7DqeRUd5pUqkxSA_1MvqRpa3Spq5Dw_eecnI-Q15ztOePtu_Mew0PEtBdMyD3nrVDdE7LjTLUVU418SnaMcVkp2fAb8iKlc7nyRrLn5EZ2ou0Fa3fk5wEy-Et2Bry_UAwnCAYttS6iydTiMYKF7OZA55EGl-NcDZAKASG7AUzG6MBTOGLIia7JhWMJoy_p6AwdIEaHsTwlc4J4RGpmX8J5mtNywiuylE-kNSJdPKQJSmFL4wmDWycaIMwLxDKex_SSPBvBJ3z1eN6S7x_vvh0-V_dfP305fLivTF3zXEkAJkbbjwqEVLxl2Es5ys7UnLWqG43o-lqNtpGiH0AZ1fU4tKJBa7EbR5C35O1Wd4nzjxVT1lOZHr2HgPOatCxb5E0v-_6_qOiFkJ0qUxS03lAT55QijnqJboJ40Zzpq1F91ptRfTWqN6Ml9uaxwzpMaP-G_igswPsNwLKSh7JrnYzDq8TfCrWd3b87_AKC-bkG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822379916</pqid></control><display><type>article</type><title>Catalytically enhanced direct degradation of nitro-based antibacterial agents using dielectric barrier discharge cold atmospheric pressure plasma and rhenium nanoparticles</title><source>Elsevier ScienceDirect Journals</source><creator>Khan, Mujahid Ameen ; Dzimitrowicz, Anna ; Caban, Magda ; Jamroz, Piotr ; Terefinko, Dominik ; Tylus, Włodzimierz ; Pohl, Pawel ; Cyganowski, Piotr</creator><creatorcontrib>Khan, Mujahid Ameen ; Dzimitrowicz, Anna ; Caban, Magda ; Jamroz, Piotr ; Terefinko, Dominik ; Tylus, Włodzimierz ; Pohl, Pawel ; Cyganowski, Piotr</creatorcontrib><description>The common utilization of antimicrobial agents in medicine and veterinary creates serious problems with multidrug resistance spreading among pathogens. Bearing this in mind, wastewaters have to be completely purified from antimicrobial agents. In this context, a dielectric barrier discharge cold atmospheric pressure plasma (DBD-CAPP) system was used in the present study as a multifunctional tool for the deactivation of nitro-based pharmacuticals such as furazolidone (FRz) and chloramphenicol (ChRP) in solutions. A direct approach was applied to this by treating solutions of the studied drugs by DBD-CAPP in the presence of the ReO4− ions. It was found that Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), generated in the DBD-CAPP-treated liquid, played a dual role in the process. On the one hand, ROS and RNS led to the direct degradation of FRz and ChRP, and on the other hand, they enabled the production of Re nanoparticles (ReNPs). The produced in this manner ReNPs consisted of catalytically active Re+4, Re+6, and Re+7 species which allowed the reduction of –NO2 groups contained in the FRz and ChRP. Unlike the DBD-CAPP, the catalytically enhanced DBD-CAPP led to almost FRz and ChRP removals from studied solutions. The catalytic boost was particularly highlighted when catalyst/DBD-CAPP was operated in the synthetic waste matrix. Re-active sites in this scenario led to the facilitated deactivation of antibiotics, achieving significantly higher FRz and ChRP removals than DBD-CAPP on its own. •A unique catalytic-reaction-discharge system was proposed.•The system combined dielectric barrier discharge and rhenium nanoparticles.•A simultaneous decomposition and reduction of antimicrobial agents were observed.•Catalytic boost enabled removal of Furazolidone and Chloramphenicol from wastewater.</description><identifier>ISSN: 0013-9351</identifier><identifier>EISSN: 1096-0953</identifier><identifier>DOI: 10.1016/j.envres.2023.116297</identifier><identifier>PMID: 37268206</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>atmospheric pressure ; Chloramphenicol ; cold ; Furazolidone ; liquids ; medicine ; Metallic nanoparticles ; Multidrug resistance ; multiple drug resistance ; nanoparticles ; Non-thermal plasma ; reactive nitrogen species ; reactive oxygen species ; Reduction ; rhenium ; species ; wastewater</subject><ispartof>Environmental research, 2023-08, Vol.231 (Pt 3), p.116297-116297, Article 116297</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-3aa02fd8f9a239160e833f37c410697fc27849fd5328ba9c978eb625edde7ffa3</citedby><cites>FETCH-LOGICAL-c441t-3aa02fd8f9a239160e833f37c410697fc27849fd5328ba9c978eb625edde7ffa3</cites><orcidid>0000-0003-1072-8989 ; 0000-0001-8437-0831 ; 0000-0001-6780-5100 ; 0000-0002-8040-5862 ; 0000-0002-5902-3683 ; 0000-0002-3110-4246 ; 0000-0003-3813-9350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013935123011015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37268206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Mujahid Ameen</creatorcontrib><creatorcontrib>Dzimitrowicz, Anna</creatorcontrib><creatorcontrib>Caban, Magda</creatorcontrib><creatorcontrib>Jamroz, Piotr</creatorcontrib><creatorcontrib>Terefinko, Dominik</creatorcontrib><creatorcontrib>Tylus, Włodzimierz</creatorcontrib><creatorcontrib>Pohl, Pawel</creatorcontrib><creatorcontrib>Cyganowski, Piotr</creatorcontrib><title>Catalytically enhanced direct degradation of nitro-based antibacterial agents using dielectric barrier discharge cold atmospheric pressure plasma and rhenium nanoparticles</title><title>Environmental research</title><addtitle>Environ Res</addtitle><description>The common utilization of antimicrobial agents in medicine and veterinary creates serious problems with multidrug resistance spreading among pathogens. Bearing this in mind, wastewaters have to be completely purified from antimicrobial agents. In this context, a dielectric barrier discharge cold atmospheric pressure plasma (DBD-CAPP) system was used in the present study as a multifunctional tool for the deactivation of nitro-based pharmacuticals such as furazolidone (FRz) and chloramphenicol (ChRP) in solutions. A direct approach was applied to this by treating solutions of the studied drugs by DBD-CAPP in the presence of the ReO4− ions. It was found that Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), generated in the DBD-CAPP-treated liquid, played a dual role in the process. On the one hand, ROS and RNS led to the direct degradation of FRz and ChRP, and on the other hand, they enabled the production of Re nanoparticles (ReNPs). The produced in this manner ReNPs consisted of catalytically active Re+4, Re+6, and Re+7 species which allowed the reduction of –NO2 groups contained in the FRz and ChRP. Unlike the DBD-CAPP, the catalytically enhanced DBD-CAPP led to almost FRz and ChRP removals from studied solutions. The catalytic boost was particularly highlighted when catalyst/DBD-CAPP was operated in the synthetic waste matrix. Re-active sites in this scenario led to the facilitated deactivation of antibiotics, achieving significantly higher FRz and ChRP removals than DBD-CAPP on its own. •A unique catalytic-reaction-discharge system was proposed.•The system combined dielectric barrier discharge and rhenium nanoparticles.•A simultaneous decomposition and reduction of antimicrobial agents were observed.•Catalytic boost enabled removal of Furazolidone and Chloramphenicol from wastewater.</description><subject>atmospheric pressure</subject><subject>Chloramphenicol</subject><subject>cold</subject><subject>Furazolidone</subject><subject>liquids</subject><subject>medicine</subject><subject>Metallic nanoparticles</subject><subject>Multidrug resistance</subject><subject>multiple drug resistance</subject><subject>nanoparticles</subject><subject>Non-thermal plasma</subject><subject>reactive nitrogen species</subject><subject>reactive oxygen species</subject><subject>Reduction</subject><subject>rhenium</subject><subject>species</subject><subject>wastewater</subject><issn>0013-9351</issn><issn>1096-0953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkcuKFDEUhoMoTjv6BiJZuqk2l7plI0gzXmDAja7DqeRUd5pUqkxSA_1MvqRpa3Spq5Dw_eecnI-Q15ztOePtu_Mew0PEtBdMyD3nrVDdE7LjTLUVU418SnaMcVkp2fAb8iKlc7nyRrLn5EZ2ou0Fa3fk5wEy-Et2Bry_UAwnCAYttS6iydTiMYKF7OZA55EGl-NcDZAKASG7AUzG6MBTOGLIia7JhWMJoy_p6AwdIEaHsTwlc4J4RGpmX8J5mtNywiuylE-kNSJdPKQJSmFL4wmDWycaIMwLxDKex_SSPBvBJ3z1eN6S7x_vvh0-V_dfP305fLivTF3zXEkAJkbbjwqEVLxl2Es5ys7UnLWqG43o-lqNtpGiH0AZ1fU4tKJBa7EbR5C35O1Wd4nzjxVT1lOZHr2HgPOatCxb5E0v-_6_qOiFkJ0qUxS03lAT55QijnqJboJ40Zzpq1F91ptRfTWqN6Ml9uaxwzpMaP-G_igswPsNwLKSh7JrnYzDq8TfCrWd3b87_AKC-bkG</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Khan, Mujahid Ameen</creator><creator>Dzimitrowicz, Anna</creator><creator>Caban, Magda</creator><creator>Jamroz, Piotr</creator><creator>Terefinko, Dominik</creator><creator>Tylus, Włodzimierz</creator><creator>Pohl, Pawel</creator><creator>Cyganowski, Piotr</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1072-8989</orcidid><orcidid>https://orcid.org/0000-0001-8437-0831</orcidid><orcidid>https://orcid.org/0000-0001-6780-5100</orcidid><orcidid>https://orcid.org/0000-0002-8040-5862</orcidid><orcidid>https://orcid.org/0000-0002-5902-3683</orcidid><orcidid>https://orcid.org/0000-0002-3110-4246</orcidid><orcidid>https://orcid.org/0000-0003-3813-9350</orcidid></search><sort><creationdate>20230815</creationdate><title>Catalytically enhanced direct degradation of nitro-based antibacterial agents using dielectric barrier discharge cold atmospheric pressure plasma and rhenium nanoparticles</title><author>Khan, Mujahid Ameen ; Dzimitrowicz, Anna ; Caban, Magda ; Jamroz, Piotr ; Terefinko, Dominik ; Tylus, Włodzimierz ; Pohl, Pawel ; Cyganowski, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-3aa02fd8f9a239160e833f37c410697fc27849fd5328ba9c978eb625edde7ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>atmospheric pressure</topic><topic>Chloramphenicol</topic><topic>cold</topic><topic>Furazolidone</topic><topic>liquids</topic><topic>medicine</topic><topic>Metallic nanoparticles</topic><topic>Multidrug resistance</topic><topic>multiple drug resistance</topic><topic>nanoparticles</topic><topic>Non-thermal plasma</topic><topic>reactive nitrogen species</topic><topic>reactive oxygen species</topic><topic>Reduction</topic><topic>rhenium</topic><topic>species</topic><topic>wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Mujahid Ameen</creatorcontrib><creatorcontrib>Dzimitrowicz, Anna</creatorcontrib><creatorcontrib>Caban, Magda</creatorcontrib><creatorcontrib>Jamroz, Piotr</creatorcontrib><creatorcontrib>Terefinko, Dominik</creatorcontrib><creatorcontrib>Tylus, Włodzimierz</creatorcontrib><creatorcontrib>Pohl, Pawel</creatorcontrib><creatorcontrib>Cyganowski, Piotr</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Mujahid Ameen</au><au>Dzimitrowicz, Anna</au><au>Caban, Magda</au><au>Jamroz, Piotr</au><au>Terefinko, Dominik</au><au>Tylus, Włodzimierz</au><au>Pohl, Pawel</au><au>Cyganowski, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytically enhanced direct degradation of nitro-based antibacterial agents using dielectric barrier discharge cold atmospheric pressure plasma and rhenium nanoparticles</atitle><jtitle>Environmental research</jtitle><addtitle>Environ Res</addtitle><date>2023-08-15</date><risdate>2023</risdate><volume>231</volume><issue>Pt 3</issue><spage>116297</spage><epage>116297</epage><pages>116297-116297</pages><artnum>116297</artnum><issn>0013-9351</issn><eissn>1096-0953</eissn><abstract>The common utilization of antimicrobial agents in medicine and veterinary creates serious problems with multidrug resistance spreading among pathogens. Bearing this in mind, wastewaters have to be completely purified from antimicrobial agents. In this context, a dielectric barrier discharge cold atmospheric pressure plasma (DBD-CAPP) system was used in the present study as a multifunctional tool for the deactivation of nitro-based pharmacuticals such as furazolidone (FRz) and chloramphenicol (ChRP) in solutions. A direct approach was applied to this by treating solutions of the studied drugs by DBD-CAPP in the presence of the ReO4− ions. It was found that Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), generated in the DBD-CAPP-treated liquid, played a dual role in the process. On the one hand, ROS and RNS led to the direct degradation of FRz and ChRP, and on the other hand, they enabled the production of Re nanoparticles (ReNPs). The produced in this manner ReNPs consisted of catalytically active Re+4, Re+6, and Re+7 species which allowed the reduction of –NO2 groups contained in the FRz and ChRP. Unlike the DBD-CAPP, the catalytically enhanced DBD-CAPP led to almost FRz and ChRP removals from studied solutions. The catalytic boost was particularly highlighted when catalyst/DBD-CAPP was operated in the synthetic waste matrix. Re-active sites in this scenario led to the facilitated deactivation of antibiotics, achieving significantly higher FRz and ChRP removals than DBD-CAPP on its own. •A unique catalytic-reaction-discharge system was proposed.•The system combined dielectric barrier discharge and rhenium nanoparticles.•A simultaneous decomposition and reduction of antimicrobial agents were observed.•Catalytic boost enabled removal of Furazolidone and Chloramphenicol from wastewater.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>37268206</pmid><doi>10.1016/j.envres.2023.116297</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1072-8989</orcidid><orcidid>https://orcid.org/0000-0001-8437-0831</orcidid><orcidid>https://orcid.org/0000-0001-6780-5100</orcidid><orcidid>https://orcid.org/0000-0002-8040-5862</orcidid><orcidid>https://orcid.org/0000-0002-5902-3683</orcidid><orcidid>https://orcid.org/0000-0002-3110-4246</orcidid><orcidid>https://orcid.org/0000-0003-3813-9350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-9351
ispartof Environmental research, 2023-08, Vol.231 (Pt 3), p.116297-116297, Article 116297
issn 0013-9351
1096-0953
language eng
recordid cdi_proquest_miscellaneous_3153158388
source Elsevier ScienceDirect Journals
subjects atmospheric pressure
Chloramphenicol
cold
Furazolidone
liquids
medicine
Metallic nanoparticles
Multidrug resistance
multiple drug resistance
nanoparticles
Non-thermal plasma
reactive nitrogen species
reactive oxygen species
Reduction
rhenium
species
wastewater
title Catalytically enhanced direct degradation of nitro-based antibacterial agents using dielectric barrier discharge cold atmospheric pressure plasma and rhenium nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytically%20enhanced%20direct%20degradation%20of%20nitro-based%20antibacterial%20agents%20using%20dielectric%20barrier%20discharge%20cold%20atmospheric%20pressure%20plasma%20and%20rhenium%20nanoparticles&rft.jtitle=Environmental%20research&rft.au=Khan,%20Mujahid%20Ameen&rft.date=2023-08-15&rft.volume=231&rft.issue=Pt%203&rft.spage=116297&rft.epage=116297&rft.pages=116297-116297&rft.artnum=116297&rft.issn=0013-9351&rft.eissn=1096-0953&rft_id=info:doi/10.1016/j.envres.2023.116297&rft_dat=%3Cproquest_cross%3E3153158388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822379916&rft_id=info:pmid/37268206&rft_els_id=S0013935123011015&rfr_iscdi=true