Assessment of encoder-decoder-based segmentation models for thyroid ultrasound images

Encoder-decoder-based semantic segmentation models classify image pixels into the corresponding class, such as the ROI (region of interest) or background. In the present study, simple / dilated convolution / series / directed acyclic graph (DAG)-based encoder-decoder semantic segmentation models hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2023-08, Vol.61 (8), p.2159-2195
Hauptverfasser: Yadav, Niranjan, Dass, Rajeshwar, Virmani, Jitendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2195
container_issue 8
container_start_page 2159
container_title Medical & biological engineering & computing
container_volume 61
creator Yadav, Niranjan
Dass, Rajeshwar
Virmani, Jitendra
description Encoder-decoder-based semantic segmentation models classify image pixels into the corresponding class, such as the ROI (region of interest) or background. In the present study, simple / dilated convolution / series / directed acyclic graph (DAG)-based encoder-decoder semantic segmentation models have been implemented, i.e., SegNet (VGG16), SegNet (VGG19), U-Net, mobileNetv2, ResNet18, ResNet50, Xception and Inception networks for the segment TTUS(Thyroid Tumor Ultrasound) images. Transfer learning has been used to train these segmentation networks using original and despeckled TTUS images. The performance of the networks has been calculated using mIoU and mDC metrics. Based on the exhaustive experiments, it has been observed that ResNet50-based segmentation model obtained the best results objectively with values 0.87 for mIoU, 0.94 for mDC, and also according to radiologist opinion on shape, margin, and echogenicity characteristics of segmented lesions. It is noted that the segmentation model, namely ResNet50, provides better segmentation based on objective and subjective assessment. It may be used in the healthcare system to identify thyroid nodules accurately in real time. Graphical Abstract
doi_str_mv 10.1007/s11517-023-02849-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153156178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829431418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c46588785885ba2e2d34eeb11bad06b7055dc38fca7abb4c79e88e99ffa5a2e93</originalsourceid><addsrcrecordid>eNqFkctKxTAQhoMoery8gAspuHFTzTRJky5FvIHgRtchbabHI22jmXbh25tjvYALhbks5pt_GH7GDoGfAuf6jAAU6JwXIqWRVS432AK0hJxLKTfZgoPkOQcwO2yX6JnzAlQht9mO0EKJslIL9nhOhEQ9DmMW2gyHJniMuce5147QZ4TLNeDGVRiyPg06ytoQs_HpLYaVz6ZujI7CNPhs1bsl0j7bal1HePDZ99jj1eXDxU1-d399e3F-lzeSmzHVUhmjTSqqdgUWXkjEGqB2npe15kr5Rpi2cdrVtWx0hcZgVbWtUwmvxB47mXVfYnidkEbbr6jBrnMDhomsAJWiBG3-RQtTVFKAhDV6_At9DlMc0iOJEqo0mguRqGKmmhiIIrb2Jabv45sFbtf-2Nkfm_yxH_5YmZaOPqWnukf_vfJlSALEDFAaDUuMP7f_kH0HviGbbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835687033</pqid></control><display><type>article</type><title>Assessment of encoder-decoder-based segmentation models for thyroid ultrasound images</title><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yadav, Niranjan ; Dass, Rajeshwar ; Virmani, Jitendra</creator><creatorcontrib>Yadav, Niranjan ; Dass, Rajeshwar ; Virmani, Jitendra</creatorcontrib><description>Encoder-decoder-based semantic segmentation models classify image pixels into the corresponding class, such as the ROI (region of interest) or background. In the present study, simple / dilated convolution / series / directed acyclic graph (DAG)-based encoder-decoder semantic segmentation models have been implemented, i.e., SegNet (VGG16), SegNet (VGG19), U-Net, mobileNetv2, ResNet18, ResNet50, Xception and Inception networks for the segment TTUS(Thyroid Tumor Ultrasound) images. Transfer learning has been used to train these segmentation networks using original and despeckled TTUS images. The performance of the networks has been calculated using mIoU and mDC metrics. Based on the exhaustive experiments, it has been observed that ResNet50-based segmentation model obtained the best results objectively with values 0.87 for mIoU, 0.94 for mDC, and also according to radiologist opinion on shape, margin, and echogenicity characteristics of segmented lesions. It is noted that the segmentation model, namely ResNet50, provides better segmentation based on objective and subjective assessment. It may be used in the healthcare system to identify thyroid nodules accurately in real time. Graphical Abstract</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-023-02849-4</identifier><identifier>PMID: 37353695</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Benchmarking ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; class ; Coders ; Computer Applications ; Encoders-Decoders ; health services ; Human Physiology ; Humans ; Image classification ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Imaging ; Learning ; Networks ; Nodules ; Original Article ; Radiology ; Semantic segmentation ; Semantics ; Subjective assessment ; Thyroid ; Thyroid gland ; thyroid neoplasms ; Thyroid Nodule - diagnostic imaging ; Transfer learning ; Ultrasonic imaging ; ultrasonics ; ultrasonography ; Ultrasound</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2023-08, Vol.61 (8), p.2159-2195</ispartof><rights>International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. International Federation for Medical and Biological Engineering.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c46588785885ba2e2d34eeb11bad06b7055dc38fca7abb4c79e88e99ffa5a2e93</citedby><cites>FETCH-LOGICAL-c408t-c46588785885ba2e2d34eeb11bad06b7055dc38fca7abb4c79e88e99ffa5a2e93</cites><orcidid>0000-0002-1023-0438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-023-02849-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-023-02849-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37353695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadav, Niranjan</creatorcontrib><creatorcontrib>Dass, Rajeshwar</creatorcontrib><creatorcontrib>Virmani, Jitendra</creatorcontrib><title>Assessment of encoder-decoder-based segmentation models for thyroid ultrasound images</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Encoder-decoder-based semantic segmentation models classify image pixels into the corresponding class, such as the ROI (region of interest) or background. In the present study, simple / dilated convolution / series / directed acyclic graph (DAG)-based encoder-decoder semantic segmentation models have been implemented, i.e., SegNet (VGG16), SegNet (VGG19), U-Net, mobileNetv2, ResNet18, ResNet50, Xception and Inception networks for the segment TTUS(Thyroid Tumor Ultrasound) images. Transfer learning has been used to train these segmentation networks using original and despeckled TTUS images. The performance of the networks has been calculated using mIoU and mDC metrics. Based on the exhaustive experiments, it has been observed that ResNet50-based segmentation model obtained the best results objectively with values 0.87 for mIoU, 0.94 for mDC, and also according to radiologist opinion on shape, margin, and echogenicity characteristics of segmented lesions. It is noted that the segmentation model, namely ResNet50, provides better segmentation based on objective and subjective assessment. It may be used in the healthcare system to identify thyroid nodules accurately in real time. Graphical Abstract</description><subject>Benchmarking</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>class</subject><subject>Coders</subject><subject>Computer Applications</subject><subject>Encoders-Decoders</subject><subject>health services</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Learning</subject><subject>Networks</subject><subject>Nodules</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Subjective assessment</subject><subject>Thyroid</subject><subject>Thyroid gland</subject><subject>thyroid neoplasms</subject><subject>Thyroid Nodule - diagnostic imaging</subject><subject>Transfer learning</subject><subject>Ultrasonic imaging</subject><subject>ultrasonics</subject><subject>ultrasonography</subject><subject>Ultrasound</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctKxTAQhoMoery8gAspuHFTzTRJky5FvIHgRtchbabHI22jmXbh25tjvYALhbks5pt_GH7GDoGfAuf6jAAU6JwXIqWRVS432AK0hJxLKTfZgoPkOQcwO2yX6JnzAlQht9mO0EKJslIL9nhOhEQ9DmMW2gyHJniMuce5147QZ4TLNeDGVRiyPg06ytoQs_HpLYaVz6ZujI7CNPhs1bsl0j7bal1HePDZ99jj1eXDxU1-d399e3F-lzeSmzHVUhmjTSqqdgUWXkjEGqB2npe15kr5Rpi2cdrVtWx0hcZgVbWtUwmvxB47mXVfYnidkEbbr6jBrnMDhomsAJWiBG3-RQtTVFKAhDV6_At9DlMc0iOJEqo0mguRqGKmmhiIIrb2Jabv45sFbtf-2Nkfm_yxH_5YmZaOPqWnukf_vfJlSALEDFAaDUuMP7f_kH0HviGbbw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yadav, Niranjan</creator><creator>Dass, Rajeshwar</creator><creator>Virmani, Jitendra</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1023-0438</orcidid></search><sort><creationdate>20230801</creationdate><title>Assessment of encoder-decoder-based segmentation models for thyroid ultrasound images</title><author>Yadav, Niranjan ; Dass, Rajeshwar ; Virmani, Jitendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c46588785885ba2e2d34eeb11bad06b7055dc38fca7abb4c79e88e99ffa5a2e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmarking</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>class</topic><topic>Coders</topic><topic>Computer Applications</topic><topic>Encoders-Decoders</topic><topic>health services</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Learning</topic><topic>Networks</topic><topic>Nodules</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Subjective assessment</topic><topic>Thyroid</topic><topic>Thyroid gland</topic><topic>thyroid neoplasms</topic><topic>Thyroid Nodule - diagnostic imaging</topic><topic>Transfer learning</topic><topic>Ultrasonic imaging</topic><topic>ultrasonics</topic><topic>ultrasonography</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Niranjan</creatorcontrib><creatorcontrib>Dass, Rajeshwar</creatorcontrib><creatorcontrib>Virmani, Jitendra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Niranjan</au><au>Dass, Rajeshwar</au><au>Virmani, Jitendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of encoder-decoder-based segmentation models for thyroid ultrasound images</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>61</volume><issue>8</issue><spage>2159</spage><epage>2195</epage><pages>2159-2195</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Encoder-decoder-based semantic segmentation models classify image pixels into the corresponding class, such as the ROI (region of interest) or background. In the present study, simple / dilated convolution / series / directed acyclic graph (DAG)-based encoder-decoder semantic segmentation models have been implemented, i.e., SegNet (VGG16), SegNet (VGG19), U-Net, mobileNetv2, ResNet18, ResNet50, Xception and Inception networks for the segment TTUS(Thyroid Tumor Ultrasound) images. Transfer learning has been used to train these segmentation networks using original and despeckled TTUS images. The performance of the networks has been calculated using mIoU and mDC metrics. Based on the exhaustive experiments, it has been observed that ResNet50-based segmentation model obtained the best results objectively with values 0.87 for mIoU, 0.94 for mDC, and also according to radiologist opinion on shape, margin, and echogenicity characteristics of segmented lesions. It is noted that the segmentation model, namely ResNet50, provides better segmentation based on objective and subjective assessment. It may be used in the healthcare system to identify thyroid nodules accurately in real time. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37353695</pmid><doi>10.1007/s11517-023-02849-4</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-1023-0438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2023-08, Vol.61 (8), p.2159-2195
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_3153156178
source MEDLINE; EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Benchmarking
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
class
Coders
Computer Applications
Encoders-Decoders
health services
Human Physiology
Humans
Image classification
Image processing
Image Processing, Computer-Assisted
Image segmentation
Imaging
Learning
Networks
Nodules
Original Article
Radiology
Semantic segmentation
Semantics
Subjective assessment
Thyroid
Thyroid gland
thyroid neoplasms
Thyroid Nodule - diagnostic imaging
Transfer learning
Ultrasonic imaging
ultrasonics
ultrasonography
Ultrasound
title Assessment of encoder-decoder-based segmentation models for thyroid ultrasound images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20encoder-decoder-based%20segmentation%20models%20for%20thyroid%20ultrasound%20images&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Yadav,%20Niranjan&rft.date=2023-08-01&rft.volume=61&rft.issue=8&rft.spage=2159&rft.epage=2195&rft.pages=2159-2195&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-023-02849-4&rft_dat=%3Cproquest_cross%3E2829431418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835687033&rft_id=info:pmid/37353695&rfr_iscdi=true