Non-representative sampled networks: Estimation of network structural properties by weighting
This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2024-03, Vol.240 (1), p.1-20, Article 105689 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of econometrics |
container_volume | 240 |
creator | Hsieh, Chih-Sheng Hsu, Yu-Chin Ko, Stanley I.M. Kovářík, Jaromír Logan, Trevon D. |
description | This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network structural measures depend non-trivially on which subpopulations of nodes are missing with higher probability. We propose a methodology, adapting weighted estimators to networked contexts, which enables researchers to recover several network-level statistics and reduce the biases in the estimated network effects. The proposed weighted estimators are consistent and asymptotically normally distributed and have good performance in finite samples. Notably, our approach does not require users to assume any network formation model and is straightforward to implement. |
doi_str_mv | 10.1016/j.jeconom.2024.105689 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153153830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407624000356</els_id><sourcerecordid>3153153830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-81649446cd82dfb30583ff2c6b235c06821491aee94ce8d3f6e8fa529a9d4c313</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4EIY--dCZN0qW-iIz5AUNf9FFCl97O1LapSbqxf29rJz4KF-7l3HPux0HokpIZJTS5LmclaNvYehaTmPeYSGR6hCZUzuOoL8UxmhBGeMTJPDlFZ96XhBDBJZug92fbRA5aBx6akAWzBeyzuq0gxw2EnXWf_gYvfTB137QNtsUvjn1wnQ6dyyrcOtuCCwY8Xu_xDszmI5hmc45OiqzycHHIU_R2v3xdPEarl4enxd0q0iwVIZI04Snnic5lnBdrRoRkRRHrZB0zoUkiY8pTmgGkXIPMWZGALDIRp1mac80om6KrcW5_x1cHPqjaeA1VlTVgO68YFUNIRnqqGKnaWe8dFKp1_W9uryhRg52qVAc71WCnGu3sdXjUDT3j_1QpEXMi5c8VtwdK_-rWgFNeG2g05MaBDiq35p8l3xm3jVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153153830</pqid></control><display><type>article</type><title>Non-representative sampled networks: Estimation of network structural properties by weighting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hsieh, Chih-Sheng ; Hsu, Yu-Chin ; Ko, Stanley I.M. ; Kovářík, Jaromír ; Logan, Trevon D.</creator><creatorcontrib>Hsieh, Chih-Sheng ; Hsu, Yu-Chin ; Ko, Stanley I.M. ; Kovářík, Jaromír ; Logan, Trevon D.</creatorcontrib><description>This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network structural measures depend non-trivially on which subpopulations of nodes are missing with higher probability. We propose a methodology, adapting weighted estimators to networked contexts, which enables researchers to recover several network-level statistics and reduce the biases in the estimated network effects. The proposed weighted estimators are consistent and asymptotically normally distributed and have good performance in finite samples. Notably, our approach does not require users to assume any network formation model and is straightforward to implement.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2024.105689</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>(Post-)stratification ; econometrics ; Measurement errors ; Networks ; Non-representativeness ; probability ; Weighting</subject><ispartof>Journal of econometrics, 2024-03, Vol.240 (1), p.1-20, Article 105689</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c395t-81649446cd82dfb30583ff2c6b235c06821491aee94ce8d3f6e8fa529a9d4c313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407624000356$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hsieh, Chih-Sheng</creatorcontrib><creatorcontrib>Hsu, Yu-Chin</creatorcontrib><creatorcontrib>Ko, Stanley I.M.</creatorcontrib><creatorcontrib>Kovářík, Jaromír</creatorcontrib><creatorcontrib>Logan, Trevon D.</creatorcontrib><title>Non-representative sampled networks: Estimation of network structural properties by weighting</title><title>Journal of econometrics</title><description>This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network structural measures depend non-trivially on which subpopulations of nodes are missing with higher probability. We propose a methodology, adapting weighted estimators to networked contexts, which enables researchers to recover several network-level statistics and reduce the biases in the estimated network effects. The proposed weighted estimators are consistent and asymptotically normally distributed and have good performance in finite samples. Notably, our approach does not require users to assume any network formation model and is straightforward to implement.</description><subject>(Post-)stratification</subject><subject>econometrics</subject><subject>Measurement errors</subject><subject>Networks</subject><subject>Non-representativeness</subject><subject>probability</subject><subject>Weighting</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4EIY--dCZN0qW-iIz5AUNf9FFCl97O1LapSbqxf29rJz4KF-7l3HPux0HokpIZJTS5LmclaNvYehaTmPeYSGR6hCZUzuOoL8UxmhBGeMTJPDlFZ96XhBDBJZug92fbRA5aBx6akAWzBeyzuq0gxw2EnXWf_gYvfTB137QNtsUvjn1wnQ6dyyrcOtuCCwY8Xu_xDszmI5hmc45OiqzycHHIU_R2v3xdPEarl4enxd0q0iwVIZI04Snnic5lnBdrRoRkRRHrZB0zoUkiY8pTmgGkXIPMWZGALDIRp1mac80om6KrcW5_x1cHPqjaeA1VlTVgO68YFUNIRnqqGKnaWe8dFKp1_W9uryhRg52qVAc71WCnGu3sdXjUDT3j_1QpEXMi5c8VtwdK_-rWgFNeG2g05MaBDiq35p8l3xm3jVA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hsieh, Chih-Sheng</creator><creator>Hsu, Yu-Chin</creator><creator>Ko, Stanley I.M.</creator><creator>Kovářík, Jaromír</creator><creator>Logan, Trevon D.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240301</creationdate><title>Non-representative sampled networks: Estimation of network structural properties by weighting</title><author>Hsieh, Chih-Sheng ; Hsu, Yu-Chin ; Ko, Stanley I.M. ; Kovářík, Jaromír ; Logan, Trevon D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-81649446cd82dfb30583ff2c6b235c06821491aee94ce8d3f6e8fa529a9d4c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>(Post-)stratification</topic><topic>econometrics</topic><topic>Measurement errors</topic><topic>Networks</topic><topic>Non-representativeness</topic><topic>probability</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Chih-Sheng</creatorcontrib><creatorcontrib>Hsu, Yu-Chin</creatorcontrib><creatorcontrib>Ko, Stanley I.M.</creatorcontrib><creatorcontrib>Kovářík, Jaromír</creatorcontrib><creatorcontrib>Logan, Trevon D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Chih-Sheng</au><au>Hsu, Yu-Chin</au><au>Ko, Stanley I.M.</au><au>Kovářík, Jaromír</au><au>Logan, Trevon D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-representative sampled networks: Estimation of network structural properties by weighting</atitle><jtitle>Journal of econometrics</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>240</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>105689</artnum><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network structural measures depend non-trivially on which subpopulations of nodes are missing with higher probability. We propose a methodology, adapting weighted estimators to networked contexts, which enables researchers to recover several network-level statistics and reduce the biases in the estimated network effects. The proposed weighted estimators are consistent and asymptotically normally distributed and have good performance in finite samples. Notably, our approach does not require users to assume any network formation model and is straightforward to implement.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2024.105689</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2024-03, Vol.240 (1), p.1-20, Article 105689 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153153830 |
source | Elsevier ScienceDirect Journals Complete |
subjects | (Post-)stratification econometrics Measurement errors Networks Non-representativeness probability Weighting |
title | Non-representative sampled networks: Estimation of network structural properties by weighting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-representative%20sampled%20networks:%20Estimation%20of%20network%20structural%20properties%20by%20weighting&rft.jtitle=Journal%20of%20econometrics&rft.au=Hsieh,%20Chih-Sheng&rft.date=2024-03-01&rft.volume=240&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=105689&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2024.105689&rft_dat=%3Cproquest_cross%3E3153153830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153153830&rft_id=info:pmid/&rft_els_id=S0304407624000356&rfr_iscdi=true |