Non-representative sampled networks: Estimation of network structural properties by weighting

This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2024-03, Vol.240 (1), p.1-20, Article 105689
Hauptverfasser: Hsieh, Chih-Sheng, Hsu, Yu-Chin, Ko, Stanley I.M., Kovářík, Jaromír, Logan, Trevon D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 1
container_title Journal of econometrics
container_volume 240
creator Hsieh, Chih-Sheng
Hsu, Yu-Chin
Ko, Stanley I.M.
Kovářík, Jaromír
Logan, Trevon D.
description This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network structural measures depend non-trivially on which subpopulations of nodes are missing with higher probability. We propose a methodology, adapting weighted estimators to networked contexts, which enables researchers to recover several network-level statistics and reduce the biases in the estimated network effects. The proposed weighted estimators are consistent and asymptotically normally distributed and have good performance in finite samples. Notably, our approach does not require users to assume any network formation model and is straightforward to implement.
doi_str_mv 10.1016/j.jeconom.2024.105689
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153153830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407624000356</els_id><sourcerecordid>3153153830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-81649446cd82dfb30583ff2c6b235c06821491aee94ce8d3f6e8fa529a9d4c313</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4EIY--dCZN0qW-iIz5AUNf9FFCl97O1LapSbqxf29rJz4KF-7l3HPux0HokpIZJTS5LmclaNvYehaTmPeYSGR6hCZUzuOoL8UxmhBGeMTJPDlFZ96XhBDBJZug92fbRA5aBx6akAWzBeyzuq0gxw2EnXWf_gYvfTB137QNtsUvjn1wnQ6dyyrcOtuCCwY8Xu_xDszmI5hmc45OiqzycHHIU_R2v3xdPEarl4enxd0q0iwVIZI04Snnic5lnBdrRoRkRRHrZB0zoUkiY8pTmgGkXIPMWZGALDIRp1mac80om6KrcW5_x1cHPqjaeA1VlTVgO68YFUNIRnqqGKnaWe8dFKp1_W9uryhRg52qVAc71WCnGu3sdXjUDT3j_1QpEXMi5c8VtwdK_-rWgFNeG2g05MaBDiq35p8l3xm3jVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153153830</pqid></control><display><type>article</type><title>Non-representative sampled networks: Estimation of network structural properties by weighting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hsieh, Chih-Sheng ; Hsu, Yu-Chin ; Ko, Stanley I.M. ; Kovářík, Jaromír ; Logan, Trevon D.</creator><creatorcontrib>Hsieh, Chih-Sheng ; Hsu, Yu-Chin ; Ko, Stanley I.M. ; Kovářík, Jaromír ; Logan, Trevon D.</creatorcontrib><description>This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network structural measures depend non-trivially on which subpopulations of nodes are missing with higher probability. We propose a methodology, adapting weighted estimators to networked contexts, which enables researchers to recover several network-level statistics and reduce the biases in the estimated network effects. The proposed weighted estimators are consistent and asymptotically normally distributed and have good performance in finite samples. Notably, our approach does not require users to assume any network formation model and is straightforward to implement.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2024.105689</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>(Post-)stratification ; econometrics ; Measurement errors ; Networks ; Non-representativeness ; probability ; Weighting</subject><ispartof>Journal of econometrics, 2024-03, Vol.240 (1), p.1-20, Article 105689</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c395t-81649446cd82dfb30583ff2c6b235c06821491aee94ce8d3f6e8fa529a9d4c313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407624000356$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hsieh, Chih-Sheng</creatorcontrib><creatorcontrib>Hsu, Yu-Chin</creatorcontrib><creatorcontrib>Ko, Stanley I.M.</creatorcontrib><creatorcontrib>Kovářík, Jaromír</creatorcontrib><creatorcontrib>Logan, Trevon D.</creatorcontrib><title>Non-representative sampled networks: Estimation of network structural properties by weighting</title><title>Journal of econometrics</title><description>This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network structural measures depend non-trivially on which subpopulations of nodes are missing with higher probability. We propose a methodology, adapting weighted estimators to networked contexts, which enables researchers to recover several network-level statistics and reduce the biases in the estimated network effects. The proposed weighted estimators are consistent and asymptotically normally distributed and have good performance in finite samples. Notably, our approach does not require users to assume any network formation model and is straightforward to implement.</description><subject>(Post-)stratification</subject><subject>econometrics</subject><subject>Measurement errors</subject><subject>Networks</subject><subject>Non-representativeness</subject><subject>probability</subject><subject>Weighting</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4EIY--dCZN0qW-iIz5AUNf9FFCl97O1LapSbqxf29rJz4KF-7l3HPux0HokpIZJTS5LmclaNvYehaTmPeYSGR6hCZUzuOoL8UxmhBGeMTJPDlFZ96XhBDBJZug92fbRA5aBx6akAWzBeyzuq0gxw2EnXWf_gYvfTB137QNtsUvjn1wnQ6dyyrcOtuCCwY8Xu_xDszmI5hmc45OiqzycHHIU_R2v3xdPEarl4enxd0q0iwVIZI04Snnic5lnBdrRoRkRRHrZB0zoUkiY8pTmgGkXIPMWZGALDIRp1mac80om6KrcW5_x1cHPqjaeA1VlTVgO68YFUNIRnqqGKnaWe8dFKp1_W9uryhRg52qVAc71WCnGu3sdXjUDT3j_1QpEXMi5c8VtwdK_-rWgFNeG2g05MaBDiq35p8l3xm3jVA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hsieh, Chih-Sheng</creator><creator>Hsu, Yu-Chin</creator><creator>Ko, Stanley I.M.</creator><creator>Kovářík, Jaromír</creator><creator>Logan, Trevon D.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240301</creationdate><title>Non-representative sampled networks: Estimation of network structural properties by weighting</title><author>Hsieh, Chih-Sheng ; Hsu, Yu-Chin ; Ko, Stanley I.M. ; Kovářík, Jaromír ; Logan, Trevon D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-81649446cd82dfb30583ff2c6b235c06821491aee94ce8d3f6e8fa529a9d4c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>(Post-)stratification</topic><topic>econometrics</topic><topic>Measurement errors</topic><topic>Networks</topic><topic>Non-representativeness</topic><topic>probability</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Chih-Sheng</creatorcontrib><creatorcontrib>Hsu, Yu-Chin</creatorcontrib><creatorcontrib>Ko, Stanley I.M.</creatorcontrib><creatorcontrib>Kovářík, Jaromír</creatorcontrib><creatorcontrib>Logan, Trevon D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Chih-Sheng</au><au>Hsu, Yu-Chin</au><au>Ko, Stanley I.M.</au><au>Kovářík, Jaromír</au><au>Logan, Trevon D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-representative sampled networks: Estimation of network structural properties by weighting</atitle><jtitle>Journal of econometrics</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>240</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>105689</artnum><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>This paper analyzes statistical issues arising from non-representative samples of a network. Sampled network data could systematically bias the network properties and generate non-classical measurement error problems. Apart from the sampling rate and the elicitation procedure, the biases on network structural measures depend non-trivially on which subpopulations of nodes are missing with higher probability. We propose a methodology, adapting weighted estimators to networked contexts, which enables researchers to recover several network-level statistics and reduce the biases in the estimated network effects. The proposed weighted estimators are consistent and asymptotically normally distributed and have good performance in finite samples. Notably, our approach does not require users to assume any network formation model and is straightforward to implement.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2024.105689</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2024-03, Vol.240 (1), p.1-20, Article 105689
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_3153153830
source Elsevier ScienceDirect Journals Complete
subjects (Post-)stratification
econometrics
Measurement errors
Networks
Non-representativeness
probability
Weighting
title Non-representative sampled networks: Estimation of network structural properties by weighting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-representative%20sampled%20networks:%20Estimation%20of%20network%20structural%20properties%20by%20weighting&rft.jtitle=Journal%20of%20econometrics&rft.au=Hsieh,%20Chih-Sheng&rft.date=2024-03-01&rft.volume=240&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=105689&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2024.105689&rft_dat=%3Cproquest_cross%3E3153153830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153153830&rft_id=info:pmid/&rft_els_id=S0304407624000356&rfr_iscdi=true