Exploratory Analysis of South American Wines Using Artificial Intelligence

In this work, microwave-induced plasma optical emission spectrometry was applied for multielement determination in South American wine samples. The analytes were determined after acid digestion of 47 samples of Brazilian and Argentinian wines. Then, logistic regression, support vector machine, and d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological trace element research 2023-09, Vol.201 (9), p.4590-4599
Hauptverfasser: Carneiro, Candice N., Gomez, Federico J. V., Spisso, Adrian, Silva, Maria Fernanda, Santos, Jorge L. O., Dias, Fabio de S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4599
container_issue 9
container_start_page 4590
container_title Biological trace element research
container_volume 201
creator Carneiro, Candice N.
Gomez, Federico J. V.
Spisso, Adrian
Silva, Maria Fernanda
Santos, Jorge L. O.
Dias, Fabio de S.
description In this work, microwave-induced plasma optical emission spectrometry was applied for multielement determination in South American wine samples. The analytes were determined after acid digestion of 47 samples of Brazilian and Argentinian wines. Then, logistic regression, support vector machine, and decision tree for exploratory analysis and comparison of these algorithms in differentiating red wine samples by region of origin were carried out. All wine samples were classified according to their geographical origin. The quantification limits (mg L −1 ) were P: 0.06, B: 0.08, K: 0.17, Mn: 0.002, Cr: 0.002, and Al: 0.02. The accuracy of the method was evaluated by analyzing the wine samples by ICP OES for results’ comparison. The concentrations in mg L −1 found for each element in wine samples were as follows: Al (
doi_str_mv 10.1007/s12011-022-03529-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153153628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758109905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ff680f826b563608c6429d1a00eb2a88f4d9287422d6404bdd3c838cba17ad543</originalsourceid><addsrcrecordid>eNqFkUtLxDAQx4Mo7vr4Ah6k4MVLdfJsclxkfSF4UPEY0jRds3TbNWnB_fZmXR_gQSEwh_zmP8P8EDrCcIYBivOICWCcAyE5UE5UzrbQGHOucigIbKMxYEFzpiQbob0Y5wC4IIruohEVnAMRfIxup2_Lpgum78Iqm7SmWUUfs67OHrqhf8kmCxe8NW327FsXs6fo21k2Cb2vvfWmyW7a3jWNn7nWugO0U5smusPPuo-eLqePF9f53f3VzcXkLrcMZJ_XtZBQSyJKLqgAaQUjqsIGwJXESFmzShFZMEIqwYCVVUWtpNKWBhem4ozuo9NN7jJ0r4OLvV74aNMapnXdEDXFfP0Ekf-ipOASg1LAE3ryC513Q0gHSVQaj0EoKBJFNpQNXYzB1XoZ_MKElcag11L0RopOUvSHFL1e-PgzeigXrvpu-bKQALoBYvpqZy78zP4j9h1YtZUt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838106907</pqid></control><display><type>article</type><title>Exploratory Analysis of South American Wines Using Artificial Intelligence</title><source>Springer Nature - Complete Springer Journals</source><creator>Carneiro, Candice N. ; Gomez, Federico J. V. ; Spisso, Adrian ; Silva, Maria Fernanda ; Santos, Jorge L. O. ; Dias, Fabio de S.</creator><creatorcontrib>Carneiro, Candice N. ; Gomez, Federico J. V. ; Spisso, Adrian ; Silva, Maria Fernanda ; Santos, Jorge L. O. ; Dias, Fabio de S.</creatorcontrib><description>In this work, microwave-induced plasma optical emission spectrometry was applied for multielement determination in South American wine samples. The analytes were determined after acid digestion of 47 samples of Brazilian and Argentinian wines. Then, logistic regression, support vector machine, and decision tree for exploratory analysis and comparison of these algorithms in differentiating red wine samples by region of origin were carried out. All wine samples were classified according to their geographical origin. The quantification limits (mg L −1 ) were P: 0.06, B: 0.08, K: 0.17, Mn: 0.002, Cr: 0.002, and Al: 0.02. The accuracy of the method was evaluated by analyzing the wine samples by ICP OES for results’ comparison. The concentrations in mg L −1 found for each element in wine samples were as follows: Al (&lt; 0.02–1.82), Cr (0.15–0.50), Mn (&lt; 0.002–0.8), P (97–277), B (1.7–11.6), Pb (&lt; 0.06–0.3), Na (8.84–41.57), and K (604–1701), in mg L −1 .</description><identifier>ISSN: 0163-4984</identifier><identifier>EISSN: 1559-0720</identifier><identifier>DOI: 10.1007/s12011-022-03529-4</identifier><identifier>PMID: 36550265</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acid digestion ; Algorithms ; Aluminum ; Analytical chemistry ; Artificial intelligence ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; chemical species ; Cluster analysis ; Decision analysis ; decision support systems ; Decision trees ; Ions ; Life Sciences ; Manganese ; microwave treatment ; Nutrition ; Oncology ; Optical emission spectroscopy ; provenance ; red wines ; regression analysis ; Spectrometry ; spectroscopy ; Support vector machines ; wet digestion method ; Wine ; Wines</subject><ispartof>Biological trace element research, 2023-09, Vol.201 (9), p.4590-4599</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ff680f826b563608c6429d1a00eb2a88f4d9287422d6404bdd3c838cba17ad543</citedby><cites>FETCH-LOGICAL-c408t-ff680f826b563608c6429d1a00eb2a88f4d9287422d6404bdd3c838cba17ad543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12011-022-03529-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12011-022-03529-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36550265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carneiro, Candice N.</creatorcontrib><creatorcontrib>Gomez, Federico J. V.</creatorcontrib><creatorcontrib>Spisso, Adrian</creatorcontrib><creatorcontrib>Silva, Maria Fernanda</creatorcontrib><creatorcontrib>Santos, Jorge L. O.</creatorcontrib><creatorcontrib>Dias, Fabio de S.</creatorcontrib><title>Exploratory Analysis of South American Wines Using Artificial Intelligence</title><title>Biological trace element research</title><addtitle>Biol Trace Elem Res</addtitle><addtitle>Biol Trace Elem Res</addtitle><description>In this work, microwave-induced plasma optical emission spectrometry was applied for multielement determination in South American wine samples. The analytes were determined after acid digestion of 47 samples of Brazilian and Argentinian wines. Then, logistic regression, support vector machine, and decision tree for exploratory analysis and comparison of these algorithms in differentiating red wine samples by region of origin were carried out. All wine samples were classified according to their geographical origin. The quantification limits (mg L −1 ) were P: 0.06, B: 0.08, K: 0.17, Mn: 0.002, Cr: 0.002, and Al: 0.02. The accuracy of the method was evaluated by analyzing the wine samples by ICP OES for results’ comparison. The concentrations in mg L −1 found for each element in wine samples were as follows: Al (&lt; 0.02–1.82), Cr (0.15–0.50), Mn (&lt; 0.002–0.8), P (97–277), B (1.7–11.6), Pb (&lt; 0.06–0.3), Na (8.84–41.57), and K (604–1701), in mg L −1 .</description><subject>Acid digestion</subject><subject>Algorithms</subject><subject>Aluminum</subject><subject>Analytical chemistry</subject><subject>Artificial intelligence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>chemical species</subject><subject>Cluster analysis</subject><subject>Decision analysis</subject><subject>decision support systems</subject><subject>Decision trees</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Manganese</subject><subject>microwave treatment</subject><subject>Nutrition</subject><subject>Oncology</subject><subject>Optical emission spectroscopy</subject><subject>provenance</subject><subject>red wines</subject><subject>regression analysis</subject><subject>Spectrometry</subject><subject>spectroscopy</subject><subject>Support vector machines</subject><subject>wet digestion method</subject><subject>Wine</subject><subject>Wines</subject><issn>0163-4984</issn><issn>1559-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkUtLxDAQx4Mo7vr4Ah6k4MVLdfJsclxkfSF4UPEY0jRds3TbNWnB_fZmXR_gQSEwh_zmP8P8EDrCcIYBivOICWCcAyE5UE5UzrbQGHOucigIbKMxYEFzpiQbob0Y5wC4IIruohEVnAMRfIxup2_Lpgum78Iqm7SmWUUfs67OHrqhf8kmCxe8NW327FsXs6fo21k2Cb2vvfWmyW7a3jWNn7nWugO0U5smusPPuo-eLqePF9f53f3VzcXkLrcMZJ_XtZBQSyJKLqgAaQUjqsIGwJXESFmzShFZMEIqwYCVVUWtpNKWBhem4ozuo9NN7jJ0r4OLvV74aNMapnXdEDXFfP0Ekf-ipOASg1LAE3ryC513Q0gHSVQaj0EoKBJFNpQNXYzB1XoZ_MKElcag11L0RopOUvSHFL1e-PgzeigXrvpu-bKQALoBYvpqZy78zP4j9h1YtZUt</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Carneiro, Candice N.</creator><creator>Gomez, Federico J. V.</creator><creator>Spisso, Adrian</creator><creator>Silva, Maria Fernanda</creator><creator>Santos, Jorge L. O.</creator><creator>Dias, Fabio de S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230901</creationdate><title>Exploratory Analysis of South American Wines Using Artificial Intelligence</title><author>Carneiro, Candice N. ; Gomez, Federico J. V. ; Spisso, Adrian ; Silva, Maria Fernanda ; Santos, Jorge L. O. ; Dias, Fabio de S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ff680f826b563608c6429d1a00eb2a88f4d9287422d6404bdd3c838cba17ad543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acid digestion</topic><topic>Algorithms</topic><topic>Aluminum</topic><topic>Analytical chemistry</topic><topic>Artificial intelligence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>chemical species</topic><topic>Cluster analysis</topic><topic>Decision analysis</topic><topic>decision support systems</topic><topic>Decision trees</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Manganese</topic><topic>microwave treatment</topic><topic>Nutrition</topic><topic>Oncology</topic><topic>Optical emission spectroscopy</topic><topic>provenance</topic><topic>red wines</topic><topic>regression analysis</topic><topic>Spectrometry</topic><topic>spectroscopy</topic><topic>Support vector machines</topic><topic>wet digestion method</topic><topic>Wine</topic><topic>Wines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carneiro, Candice N.</creatorcontrib><creatorcontrib>Gomez, Federico J. V.</creatorcontrib><creatorcontrib>Spisso, Adrian</creatorcontrib><creatorcontrib>Silva, Maria Fernanda</creatorcontrib><creatorcontrib>Santos, Jorge L. O.</creatorcontrib><creatorcontrib>Dias, Fabio de S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biological trace element research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carneiro, Candice N.</au><au>Gomez, Federico J. V.</au><au>Spisso, Adrian</au><au>Silva, Maria Fernanda</au><au>Santos, Jorge L. O.</au><au>Dias, Fabio de S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploratory Analysis of South American Wines Using Artificial Intelligence</atitle><jtitle>Biological trace element research</jtitle><stitle>Biol Trace Elem Res</stitle><addtitle>Biol Trace Elem Res</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>201</volume><issue>9</issue><spage>4590</spage><epage>4599</epage><pages>4590-4599</pages><issn>0163-4984</issn><eissn>1559-0720</eissn><abstract>In this work, microwave-induced plasma optical emission spectrometry was applied for multielement determination in South American wine samples. The analytes were determined after acid digestion of 47 samples of Brazilian and Argentinian wines. Then, logistic regression, support vector machine, and decision tree for exploratory analysis and comparison of these algorithms in differentiating red wine samples by region of origin were carried out. All wine samples were classified according to their geographical origin. The quantification limits (mg L −1 ) were P: 0.06, B: 0.08, K: 0.17, Mn: 0.002, Cr: 0.002, and Al: 0.02. The accuracy of the method was evaluated by analyzing the wine samples by ICP OES for results’ comparison. The concentrations in mg L −1 found for each element in wine samples were as follows: Al (&lt; 0.02–1.82), Cr (0.15–0.50), Mn (&lt; 0.002–0.8), P (97–277), B (1.7–11.6), Pb (&lt; 0.06–0.3), Na (8.84–41.57), and K (604–1701), in mg L −1 .</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36550265</pmid><doi>10.1007/s12011-022-03529-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-4984
ispartof Biological trace element research, 2023-09, Vol.201 (9), p.4590-4599
issn 0163-4984
1559-0720
language eng
recordid cdi_proquest_miscellaneous_3153153628
source Springer Nature - Complete Springer Journals
subjects Acid digestion
Algorithms
Aluminum
Analytical chemistry
Artificial intelligence
Biochemistry
Biomedical and Life Sciences
Biotechnology
chemical species
Cluster analysis
Decision analysis
decision support systems
Decision trees
Ions
Life Sciences
Manganese
microwave treatment
Nutrition
Oncology
Optical emission spectroscopy
provenance
red wines
regression analysis
Spectrometry
spectroscopy
Support vector machines
wet digestion method
Wine
Wines
title Exploratory Analysis of South American Wines Using Artificial Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploratory%20Analysis%20of%20South%20American%20Wines%20Using%20Artificial%20Intelligence&rft.jtitle=Biological%20trace%20element%20research&rft.au=Carneiro,%20Candice%20N.&rft.date=2023-09-01&rft.volume=201&rft.issue=9&rft.spage=4590&rft.epage=4599&rft.pages=4590-4599&rft.issn=0163-4984&rft.eissn=1559-0720&rft_id=info:doi/10.1007/s12011-022-03529-4&rft_dat=%3Cproquest_cross%3E2758109905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838106907&rft_id=info:pmid/36550265&rfr_iscdi=true