A new spectral index for estimation of wheat canopy chlorophyll density: considering background interference and view zenith angle effect

Remote sensing (RS) estimation of chlorophyll density serves as an effective measure to assess crop nitrogen (N) nutrition status and guide precision N fertilizer management. Throμgh multi-angular RS, this study aims to improve the estimation accuracy of chlorophyll density by reducing the disturban...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Precision agriculture 2023-10, Vol.24 (5), p.2098-2125
Hauptverfasser: Pan, Yuanyuan, Zhou, Ruiheng, Zhang, Jiayi, Guo, Wanting, Yu, Minglei, Guo, Caili, Yao, Xia, Cheng, Tao, Zhu, Yan, Cao, Weixing, Tian, Yongchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2125
container_issue 5
container_start_page 2098
container_title Precision agriculture
container_volume 24
creator Pan, Yuanyuan
Zhou, Ruiheng
Zhang, Jiayi
Guo, Wanting
Yu, Minglei
Guo, Caili
Yao, Xia
Cheng, Tao
Zhu, Yan
Cao, Weixing
Tian, Yongchao
description Remote sensing (RS) estimation of chlorophyll density serves as an effective measure to assess crop nitrogen (N) nutrition status and guide precision N fertilizer management. Throμgh multi-angular RS, this study aims to improve the estimation accuracy of chlorophyll density by reducing the disturbance of mixed background (soil and non-photosynthetic vegetation), and to explore the solutions to minimizing the influence of view zenith angles (VZAs). Wheat canopy multi-angular hyperspectral data (− 60°, − 45°, − 30°, 0°, 30°, 45°, 60°) were systematically collected throμgh three-years of field experiments. A soil non-photosynthetic background and angle insensitive vegetation index SAIVI = ( ρ 750 - 1 - ρ 860 - 1 ) - ( ρ 765 - 1 - ρ 860 - 1 ) ( ρ 750 - 1 - ρ 860 - 1 ) + ( ρ 765 - 1 - ρ 860 - 1 ) was proposed for inversion of chlorophyll density. Furthermore, SAIVI, along with another 11 vegetation indices (VIs), were evaluated for their performance in estimating three chlorophyll parameters, namely chlorophyll concentration (CC), canopy chlorophyll density based on leaf area (CCC L ) and canopy chlorophyll density based on fresh weight (CCC W ). The results indicated that SAIVI had strong stability in restraining distractor (mixed background of soil and non-photosynthetic vegetation). For inversion of CC, CCC L and CCC W , backward VZAs showed higher accuracy than vertical angle. The new proposed SAIVI performed best for estimating CCC L and CCC W with an optimal VZA of − 30°, and the corresponding R 2 and RRMSE of 0.76 and 0.77, 14.5% and 26.6%, respectively.
doi_str_mv 10.1007/s11119-023-10032-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153150615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852192500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-aac4aa4c95aaec0cf9c7558d95b06b1ad55f4dd8d2ef17449e00110aa321bb763</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtSqQoAt_gJMlLlxCbSfOB7fVqtBKSL2UszWxx7uhwQ52ttvtP-BfM3QrVeoBy9LMWO_NeN5j7EKKaylE8ylLOl0hVFlQXapi94GdSt1QWcv2iPKy1YVSuj5hH3N-FIJglTplL0secMfzhHZOMPIhOPzFfUwc8zw8wTzEwKPnuw3CzC2EOO253YwxxWmzH0fuMORh3t9wGylxmIaw5j3YH-sUt8FRwxmTx4TBIgd6-DnQvN8YhnlD9XpEjt7T9DN27GHMeP43LtjD7efvqy_F_be7r6vlfWFLreYCwFYAle00AFphfWcbrVvX6V7UvQSnta-ca51CL5uq6pB2lQKgVLLvm7pcsKtD3ynF5y1taZ6GbHEcIWDcZlNKTVfUFBbs8j_oY9ymQL8zqtVKdkqT2AumDiibYs4JvZkSKZf2Rgrz5o45uGPIHfPHHbMjUnkg5elNMUz_Wr_DegX8nJX1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852192500</pqid></control><display><type>article</type><title>A new spectral index for estimation of wheat canopy chlorophyll density: considering background interference and view zenith angle effect</title><source>Springer Nature - Complete Springer Journals</source><creator>Pan, Yuanyuan ; Zhou, Ruiheng ; Zhang, Jiayi ; Guo, Wanting ; Yu, Minglei ; Guo, Caili ; Yao, Xia ; Cheng, Tao ; Zhu, Yan ; Cao, Weixing ; Tian, Yongchao</creator><creatorcontrib>Pan, Yuanyuan ; Zhou, Ruiheng ; Zhang, Jiayi ; Guo, Wanting ; Yu, Minglei ; Guo, Caili ; Yao, Xia ; Cheng, Tao ; Zhu, Yan ; Cao, Weixing ; Tian, Yongchao</creatorcontrib><description>Remote sensing (RS) estimation of chlorophyll density serves as an effective measure to assess crop nitrogen (N) nutrition status and guide precision N fertilizer management. Throμgh multi-angular RS, this study aims to improve the estimation accuracy of chlorophyll density by reducing the disturbance of mixed background (soil and non-photosynthetic vegetation), and to explore the solutions to minimizing the influence of view zenith angles (VZAs). Wheat canopy multi-angular hyperspectral data (− 60°, − 45°, − 30°, 0°, 30°, 45°, 60°) were systematically collected throμgh three-years of field experiments. A soil non-photosynthetic background and angle insensitive vegetation index SAIVI = ( ρ 750 - 1 - ρ 860 - 1 ) - ( ρ 765 - 1 - ρ 860 - 1 ) ( ρ 750 - 1 - ρ 860 - 1 ) + ( ρ 765 - 1 - ρ 860 - 1 ) was proposed for inversion of chlorophyll density. Furthermore, SAIVI, along with another 11 vegetation indices (VIs), were evaluated for their performance in estimating three chlorophyll parameters, namely chlorophyll concentration (CC), canopy chlorophyll density based on leaf area (CCC L ) and canopy chlorophyll density based on fresh weight (CCC W ). The results indicated that SAIVI had strong stability in restraining distractor (mixed background of soil and non-photosynthetic vegetation). For inversion of CC, CCC L and CCC W , backward VZAs showed higher accuracy than vertical angle. The new proposed SAIVI performed best for estimating CCC L and CCC W with an optimal VZA of − 30°, and the corresponding R 2 and RRMSE of 0.76 and 0.77, 14.5% and 26.6%, respectively.</description><identifier>ISSN: 1385-2256</identifier><identifier>EISSN: 1573-1618</identifier><identifier>DOI: 10.1007/s11119-023-10032-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Atmospheric Sciences ; Biomedical and Life Sciences ; Canopies ; canopy ; Chemistry and Earth Sciences ; Chlorophyll ; Computer Science ; Density ; Estimation ; Field tests ; Leaf area ; Life Sciences ; Nitrogen ; nitrogen fertilizers ; nutritional status ; Photosynthesis ; Physics ; precision ; Remote sensing ; Remote Sensing/Photogrammetry ; soil ; Soil Science &amp; Conservation ; Soils ; Statistics for Engineering ; Vegetation ; Vegetation index ; Wheat ; Zenith</subject><ispartof>Precision agriculture, 2023-10, Vol.24 (5), p.2098-2125</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-aac4aa4c95aaec0cf9c7558d95b06b1ad55f4dd8d2ef17449e00110aa321bb763</citedby><cites>FETCH-LOGICAL-c352t-aac4aa4c95aaec0cf9c7558d95b06b1ad55f4dd8d2ef17449e00110aa321bb763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11119-023-10032-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11119-023-10032-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pan, Yuanyuan</creatorcontrib><creatorcontrib>Zhou, Ruiheng</creatorcontrib><creatorcontrib>Zhang, Jiayi</creatorcontrib><creatorcontrib>Guo, Wanting</creatorcontrib><creatorcontrib>Yu, Minglei</creatorcontrib><creatorcontrib>Guo, Caili</creatorcontrib><creatorcontrib>Yao, Xia</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Zhu, Yan</creatorcontrib><creatorcontrib>Cao, Weixing</creatorcontrib><creatorcontrib>Tian, Yongchao</creatorcontrib><title>A new spectral index for estimation of wheat canopy chlorophyll density: considering background interference and view zenith angle effect</title><title>Precision agriculture</title><addtitle>Precision Agric</addtitle><description>Remote sensing (RS) estimation of chlorophyll density serves as an effective measure to assess crop nitrogen (N) nutrition status and guide precision N fertilizer management. Throμgh multi-angular RS, this study aims to improve the estimation accuracy of chlorophyll density by reducing the disturbance of mixed background (soil and non-photosynthetic vegetation), and to explore the solutions to minimizing the influence of view zenith angles (VZAs). Wheat canopy multi-angular hyperspectral data (− 60°, − 45°, − 30°, 0°, 30°, 45°, 60°) were systematically collected throμgh three-years of field experiments. A soil non-photosynthetic background and angle insensitive vegetation index SAIVI = ( ρ 750 - 1 - ρ 860 - 1 ) - ( ρ 765 - 1 - ρ 860 - 1 ) ( ρ 750 - 1 - ρ 860 - 1 ) + ( ρ 765 - 1 - ρ 860 - 1 ) was proposed for inversion of chlorophyll density. Furthermore, SAIVI, along with another 11 vegetation indices (VIs), were evaluated for their performance in estimating three chlorophyll parameters, namely chlorophyll concentration (CC), canopy chlorophyll density based on leaf area (CCC L ) and canopy chlorophyll density based on fresh weight (CCC W ). The results indicated that SAIVI had strong stability in restraining distractor (mixed background of soil and non-photosynthetic vegetation). For inversion of CC, CCC L and CCC W , backward VZAs showed higher accuracy than vertical angle. The new proposed SAIVI performed best for estimating CCC L and CCC W with an optimal VZA of − 30°, and the corresponding R 2 and RRMSE of 0.76 and 0.77, 14.5% and 26.6%, respectively.</description><subject>Agriculture</subject><subject>Atmospheric Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Canopies</subject><subject>canopy</subject><subject>Chemistry and Earth Sciences</subject><subject>Chlorophyll</subject><subject>Computer Science</subject><subject>Density</subject><subject>Estimation</subject><subject>Field tests</subject><subject>Leaf area</subject><subject>Life Sciences</subject><subject>Nitrogen</subject><subject>nitrogen fertilizers</subject><subject>nutritional status</subject><subject>Photosynthesis</subject><subject>Physics</subject><subject>precision</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>soil</subject><subject>Soil Science &amp; Conservation</subject><subject>Soils</subject><subject>Statistics for Engineering</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Wheat</subject><subject>Zenith</subject><issn>1385-2256</issn><issn>1573-1618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UU1P3DAQtSqQoAt_gJMlLlxCbSfOB7fVqtBKSL2UszWxx7uhwQ52ttvtP-BfM3QrVeoBy9LMWO_NeN5j7EKKaylE8ylLOl0hVFlQXapi94GdSt1QWcv2iPKy1YVSuj5hH3N-FIJglTplL0secMfzhHZOMPIhOPzFfUwc8zw8wTzEwKPnuw3CzC2EOO253YwxxWmzH0fuMORh3t9wGylxmIaw5j3YH-sUt8FRwxmTx4TBIgd6-DnQvN8YhnlD9XpEjt7T9DN27GHMeP43LtjD7efvqy_F_be7r6vlfWFLreYCwFYAle00AFphfWcbrVvX6V7UvQSnta-ca51CL5uq6pB2lQKgVLLvm7pcsKtD3ynF5y1taZ6GbHEcIWDcZlNKTVfUFBbs8j_oY9ymQL8zqtVKdkqT2AumDiibYs4JvZkSKZf2Rgrz5o45uGPIHfPHHbMjUnkg5elNMUz_Wr_DegX8nJX1</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Pan, Yuanyuan</creator><creator>Zhou, Ruiheng</creator><creator>Zhang, Jiayi</creator><creator>Guo, Wanting</creator><creator>Yu, Minglei</creator><creator>Guo, Caili</creator><creator>Yao, Xia</creator><creator>Cheng, Tao</creator><creator>Zhu, Yan</creator><creator>Cao, Weixing</creator><creator>Tian, Yongchao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231001</creationdate><title>A new spectral index for estimation of wheat canopy chlorophyll density: considering background interference and view zenith angle effect</title><author>Pan, Yuanyuan ; Zhou, Ruiheng ; Zhang, Jiayi ; Guo, Wanting ; Yu, Minglei ; Guo, Caili ; Yao, Xia ; Cheng, Tao ; Zhu, Yan ; Cao, Weixing ; Tian, Yongchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-aac4aa4c95aaec0cf9c7558d95b06b1ad55f4dd8d2ef17449e00110aa321bb763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Atmospheric Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Canopies</topic><topic>canopy</topic><topic>Chemistry and Earth Sciences</topic><topic>Chlorophyll</topic><topic>Computer Science</topic><topic>Density</topic><topic>Estimation</topic><topic>Field tests</topic><topic>Leaf area</topic><topic>Life Sciences</topic><topic>Nitrogen</topic><topic>nitrogen fertilizers</topic><topic>nutritional status</topic><topic>Photosynthesis</topic><topic>Physics</topic><topic>precision</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>soil</topic><topic>Soil Science &amp; Conservation</topic><topic>Soils</topic><topic>Statistics for Engineering</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Wheat</topic><topic>Zenith</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yuanyuan</creatorcontrib><creatorcontrib>Zhou, Ruiheng</creatorcontrib><creatorcontrib>Zhang, Jiayi</creatorcontrib><creatorcontrib>Guo, Wanting</creatorcontrib><creatorcontrib>Yu, Minglei</creatorcontrib><creatorcontrib>Guo, Caili</creatorcontrib><creatorcontrib>Yao, Xia</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Zhu, Yan</creatorcontrib><creatorcontrib>Cao, Weixing</creatorcontrib><creatorcontrib>Tian, Yongchao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Precision agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yuanyuan</au><au>Zhou, Ruiheng</au><au>Zhang, Jiayi</au><au>Guo, Wanting</au><au>Yu, Minglei</au><au>Guo, Caili</au><au>Yao, Xia</au><au>Cheng, Tao</au><au>Zhu, Yan</au><au>Cao, Weixing</au><au>Tian, Yongchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new spectral index for estimation of wheat canopy chlorophyll density: considering background interference and view zenith angle effect</atitle><jtitle>Precision agriculture</jtitle><stitle>Precision Agric</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>24</volume><issue>5</issue><spage>2098</spage><epage>2125</epage><pages>2098-2125</pages><issn>1385-2256</issn><eissn>1573-1618</eissn><abstract>Remote sensing (RS) estimation of chlorophyll density serves as an effective measure to assess crop nitrogen (N) nutrition status and guide precision N fertilizer management. Throμgh multi-angular RS, this study aims to improve the estimation accuracy of chlorophyll density by reducing the disturbance of mixed background (soil and non-photosynthetic vegetation), and to explore the solutions to minimizing the influence of view zenith angles (VZAs). Wheat canopy multi-angular hyperspectral data (− 60°, − 45°, − 30°, 0°, 30°, 45°, 60°) were systematically collected throμgh three-years of field experiments. A soil non-photosynthetic background and angle insensitive vegetation index SAIVI = ( ρ 750 - 1 - ρ 860 - 1 ) - ( ρ 765 - 1 - ρ 860 - 1 ) ( ρ 750 - 1 - ρ 860 - 1 ) + ( ρ 765 - 1 - ρ 860 - 1 ) was proposed for inversion of chlorophyll density. Furthermore, SAIVI, along with another 11 vegetation indices (VIs), were evaluated for their performance in estimating three chlorophyll parameters, namely chlorophyll concentration (CC), canopy chlorophyll density based on leaf area (CCC L ) and canopy chlorophyll density based on fresh weight (CCC W ). The results indicated that SAIVI had strong stability in restraining distractor (mixed background of soil and non-photosynthetic vegetation). For inversion of CC, CCC L and CCC W , backward VZAs showed higher accuracy than vertical angle. The new proposed SAIVI performed best for estimating CCC L and CCC W with an optimal VZA of − 30°, and the corresponding R 2 and RRMSE of 0.76 and 0.77, 14.5% and 26.6%, respectively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11119-023-10032-w</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-2256
ispartof Precision agriculture, 2023-10, Vol.24 (5), p.2098-2125
issn 1385-2256
1573-1618
language eng
recordid cdi_proquest_miscellaneous_3153150615
source Springer Nature - Complete Springer Journals
subjects Agriculture
Atmospheric Sciences
Biomedical and Life Sciences
Canopies
canopy
Chemistry and Earth Sciences
Chlorophyll
Computer Science
Density
Estimation
Field tests
Leaf area
Life Sciences
Nitrogen
nitrogen fertilizers
nutritional status
Photosynthesis
Physics
precision
Remote sensing
Remote Sensing/Photogrammetry
soil
Soil Science & Conservation
Soils
Statistics for Engineering
Vegetation
Vegetation index
Wheat
Zenith
title A new spectral index for estimation of wheat canopy chlorophyll density: considering background interference and view zenith angle effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20spectral%20index%20for%20estimation%20of%20wheat%20canopy%20chlorophyll%20density:%20considering%20background%20interference%20and%20view%20zenith%20angle%20effect&rft.jtitle=Precision%20agriculture&rft.au=Pan,%20Yuanyuan&rft.date=2023-10-01&rft.volume=24&rft.issue=5&rft.spage=2098&rft.epage=2125&rft.pages=2098-2125&rft.issn=1385-2256&rft.eissn=1573-1618&rft_id=info:doi/10.1007/s11119-023-10032-w&rft_dat=%3Cproquest_cross%3E2852192500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2852192500&rft_id=info:pmid/&rfr_iscdi=true