Utilizing zebrafish models to elucidate mechanisms and develop therapies for skeletal muscle atrophy

Skeletal muscle atrophy, resulting from an imbalance in muscle protein synthesis and degradation, compromises muscle quality and function, imposing significant burdens on movement and metabolic stability. Animal models are crucial for understanding the mechanisms of skeletal muscle atrophy and devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2025-02, Vol.362, p.123357, Article 123357
Hauptverfasser: Zhao, Jing, Fang, Yimeng, Qu, Junying, He, Jiaxuan, Yi, Jia, Chen, Rongbing, Yang, Qinsi, Zhang, Kun, Wu, Wei, Sun, Da, Fang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 123357
container_title Life sciences (1973)
container_volume 362
creator Zhao, Jing
Fang, Yimeng
Qu, Junying
He, Jiaxuan
Yi, Jia
Chen, Rongbing
Yang, Qinsi
Zhang, Kun
Wu, Wei
Sun, Da
Fang, Bin
description Skeletal muscle atrophy, resulting from an imbalance in muscle protein synthesis and degradation, compromises muscle quality and function, imposing significant burdens on movement and metabolic stability. Animal models are crucial for understanding the mechanisms of skeletal muscle atrophy and developing clinical prevention and treatment strategies. Zebrafish, as small aquatic vertebrates, exhibit high genetic homology with humans and offer advantages such as rapid reproduction, development, and transparent embryos. Their physiological and anatomical similarities to mammals, including a substantial proportion of skeletal muscle and observable swimming behavior reflecting body dysfunction, make zebrafish an ideal model for studying skeletal muscle-related diseases. This review outlines the development of zebrafish skeletal muscle and highlights key pathways regulating muscle proteins, emphasizing their anatomical and genetic consistency with humans. Various zebrafish models of skeletal muscle atrophy created through physical, chemical, and gene-editing methods are systematically summarized. Current challenges and proposed improvement strategies are also discussed to enhance the reliability and applicability of zebrafish models, providing a comprehensive reference for advancing research on skeletal muscle atrophy. [Display omitted] •Muscle atrophy is common in chronic diseases, significantly impacting patient health.•Zebrafish have skeletal muscle similar to humans, ideal for atrophy studies.•Zebrafish swimming behavior indicates muscle health and function accurately.•Review covers diverse zebrafish models for muscle atrophy, including genetic methods.•Insights on new methods for modeling muscle atrophy and evaluating treatments
doi_str_mv 10.1016/j.lfs.2024.123357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151877097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024320524009470</els_id><sourcerecordid>3151877097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1508-755b064faeed9f8b6ec591951b9cc5db665a0dcb5420d8390359f8731bc203223</originalsourceid><addsrcrecordid>eNp9kD1v2zAURYmiQeJ8_IAsBccuch5FU7LQqQjSJkCALvVMUORTTYcSVT4pgP3rS8Nux05vuOdePBzG7gUsBYjqYbcMHS1LKFdLUUqp6g9sIdZ1U0AlxUe2gJwUsgR1xa6JdgCgVC0v2ZVsalUpWC-Y20w--IMffvEDtsl0nra8jw4D8SlyDLP1zkzIe7RbM3jqiZvBcYfvGOLIpy0mM3ok3sXE6Q0DTibwfiYbkJspxXG7v2UXnQmEd-d7wzbfnn4-PhevP76_PH59LazIzxS1Ui1Uq84guqZbtxVa1YhGibaxVrm2qpQBZ1u1KsGtZQNSZayWorUlyLKUN-zzaXdM8feMNOnek8UQzIBxJi2FynpqaOqMihNqUyRK2Okx-d6kvRagj3L1Tme5-ihXn-Tmzqfz_Nz26P41_trMwJcTkO3hu8ekyXocLDqf0E7aRf-f-T8TE4tE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151877097</pqid></control><display><type>article</type><title>Utilizing zebrafish models to elucidate mechanisms and develop therapies for skeletal muscle atrophy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Collection</source><creator>Zhao, Jing ; Fang, Yimeng ; Qu, Junying ; He, Jiaxuan ; Yi, Jia ; Chen, Rongbing ; Yang, Qinsi ; Zhang, Kun ; Wu, Wei ; Sun, Da ; Fang, Bin</creator><creatorcontrib>Zhao, Jing ; Fang, Yimeng ; Qu, Junying ; He, Jiaxuan ; Yi, Jia ; Chen, Rongbing ; Yang, Qinsi ; Zhang, Kun ; Wu, Wei ; Sun, Da ; Fang, Bin</creatorcontrib><description>Skeletal muscle atrophy, resulting from an imbalance in muscle protein synthesis and degradation, compromises muscle quality and function, imposing significant burdens on movement and metabolic stability. Animal models are crucial for understanding the mechanisms of skeletal muscle atrophy and developing clinical prevention and treatment strategies. Zebrafish, as small aquatic vertebrates, exhibit high genetic homology with humans and offer advantages such as rapid reproduction, development, and transparent embryos. Their physiological and anatomical similarities to mammals, including a substantial proportion of skeletal muscle and observable swimming behavior reflecting body dysfunction, make zebrafish an ideal model for studying skeletal muscle-related diseases. This review outlines the development of zebrafish skeletal muscle and highlights key pathways regulating muscle proteins, emphasizing their anatomical and genetic consistency with humans. Various zebrafish models of skeletal muscle atrophy created through physical, chemical, and gene-editing methods are systematically summarized. Current challenges and proposed improvement strategies are also discussed to enhance the reliability and applicability of zebrafish models, providing a comprehensive reference for advancing research on skeletal muscle atrophy. [Display omitted] •Muscle atrophy is common in chronic diseases, significantly impacting patient health.•Zebrafish have skeletal muscle similar to humans, ideal for atrophy studies.•Zebrafish swimming behavior indicates muscle health and function accurately.•Review covers diverse zebrafish models for muscle atrophy, including genetic methods.•Insights on new methods for modeling muscle atrophy and evaluating treatments</description><identifier>ISSN: 0024-3205</identifier><identifier>ISSN: 1879-0631</identifier><identifier>EISSN: 1879-0631</identifier><identifier>DOI: 10.1016/j.lfs.2024.123357</identifier><identifier>PMID: 39756508</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Animals ; Disease Models, Animal ; Humans ; Muscle disease ; Muscle protein ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscular Atrophy - metabolism ; Muscular Atrophy - pathology ; Muscular Atrophy - therapy ; Skeletal muscle atrophy ; Zebrafish</subject><ispartof>Life sciences (1973), 2025-02, Vol.362, p.123357, Article 123357</ispartof><rights>2025 Elsevier Inc.</rights><rights>Copyright © 2025 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1508-755b064faeed9f8b6ec591951b9cc5db665a0dcb5420d8390359f8731bc203223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024320524009470$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39756508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Fang, Yimeng</creatorcontrib><creatorcontrib>Qu, Junying</creatorcontrib><creatorcontrib>He, Jiaxuan</creatorcontrib><creatorcontrib>Yi, Jia</creatorcontrib><creatorcontrib>Chen, Rongbing</creatorcontrib><creatorcontrib>Yang, Qinsi</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Sun, Da</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><title>Utilizing zebrafish models to elucidate mechanisms and develop therapies for skeletal muscle atrophy</title><title>Life sciences (1973)</title><addtitle>Life Sci</addtitle><description>Skeletal muscle atrophy, resulting from an imbalance in muscle protein synthesis and degradation, compromises muscle quality and function, imposing significant burdens on movement and metabolic stability. Animal models are crucial for understanding the mechanisms of skeletal muscle atrophy and developing clinical prevention and treatment strategies. Zebrafish, as small aquatic vertebrates, exhibit high genetic homology with humans and offer advantages such as rapid reproduction, development, and transparent embryos. Their physiological and anatomical similarities to mammals, including a substantial proportion of skeletal muscle and observable swimming behavior reflecting body dysfunction, make zebrafish an ideal model for studying skeletal muscle-related diseases. This review outlines the development of zebrafish skeletal muscle and highlights key pathways regulating muscle proteins, emphasizing their anatomical and genetic consistency with humans. Various zebrafish models of skeletal muscle atrophy created through physical, chemical, and gene-editing methods are systematically summarized. Current challenges and proposed improvement strategies are also discussed to enhance the reliability and applicability of zebrafish models, providing a comprehensive reference for advancing research on skeletal muscle atrophy. [Display omitted] •Muscle atrophy is common in chronic diseases, significantly impacting patient health.•Zebrafish have skeletal muscle similar to humans, ideal for atrophy studies.•Zebrafish swimming behavior indicates muscle health and function accurately.•Review covers diverse zebrafish models for muscle atrophy, including genetic methods.•Insights on new methods for modeling muscle atrophy and evaluating treatments</description><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Humans</subject><subject>Muscle disease</subject><subject>Muscle protein</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscular Atrophy - metabolism</subject><subject>Muscular Atrophy - pathology</subject><subject>Muscular Atrophy - therapy</subject><subject>Skeletal muscle atrophy</subject><subject>Zebrafish</subject><issn>0024-3205</issn><issn>1879-0631</issn><issn>1879-0631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1v2zAURYmiQeJ8_IAsBccuch5FU7LQqQjSJkCALvVMUORTTYcSVT4pgP3rS8Nux05vuOdePBzG7gUsBYjqYbcMHS1LKFdLUUqp6g9sIdZ1U0AlxUe2gJwUsgR1xa6JdgCgVC0v2ZVsalUpWC-Y20w--IMffvEDtsl0nra8jw4D8SlyDLP1zkzIe7RbM3jqiZvBcYfvGOLIpy0mM3ok3sXE6Q0DTibwfiYbkJspxXG7v2UXnQmEd-d7wzbfnn4-PhevP76_PH59LazIzxS1Ui1Uq84guqZbtxVa1YhGibaxVrm2qpQBZ1u1KsGtZQNSZayWorUlyLKUN-zzaXdM8feMNOnek8UQzIBxJi2FynpqaOqMihNqUyRK2Okx-d6kvRagj3L1Tme5-ihXn-Tmzqfz_Nz26P41_trMwJcTkO3hu8ekyXocLDqf0E7aRf-f-T8TE4tE</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Zhao, Jing</creator><creator>Fang, Yimeng</creator><creator>Qu, Junying</creator><creator>He, Jiaxuan</creator><creator>Yi, Jia</creator><creator>Chen, Rongbing</creator><creator>Yang, Qinsi</creator><creator>Zhang, Kun</creator><creator>Wu, Wei</creator><creator>Sun, Da</creator><creator>Fang, Bin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250201</creationdate><title>Utilizing zebrafish models to elucidate mechanisms and develop therapies for skeletal muscle atrophy</title><author>Zhao, Jing ; Fang, Yimeng ; Qu, Junying ; He, Jiaxuan ; Yi, Jia ; Chen, Rongbing ; Yang, Qinsi ; Zhang, Kun ; Wu, Wei ; Sun, Da ; Fang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1508-755b064faeed9f8b6ec591951b9cc5db665a0dcb5420d8390359f8731bc203223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Humans</topic><topic>Muscle disease</topic><topic>Muscle protein</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscular Atrophy - metabolism</topic><topic>Muscular Atrophy - pathology</topic><topic>Muscular Atrophy - therapy</topic><topic>Skeletal muscle atrophy</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jing</creatorcontrib><creatorcontrib>Fang, Yimeng</creatorcontrib><creatorcontrib>Qu, Junying</creatorcontrib><creatorcontrib>He, Jiaxuan</creatorcontrib><creatorcontrib>Yi, Jia</creatorcontrib><creatorcontrib>Chen, Rongbing</creatorcontrib><creatorcontrib>Yang, Qinsi</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Sun, Da</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Life sciences (1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jing</au><au>Fang, Yimeng</au><au>Qu, Junying</au><au>He, Jiaxuan</au><au>Yi, Jia</au><au>Chen, Rongbing</au><au>Yang, Qinsi</au><au>Zhang, Kun</au><au>Wu, Wei</au><au>Sun, Da</au><au>Fang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing zebrafish models to elucidate mechanisms and develop therapies for skeletal muscle atrophy</atitle><jtitle>Life sciences (1973)</jtitle><addtitle>Life Sci</addtitle><date>2025-02-01</date><risdate>2025</risdate><volume>362</volume><spage>123357</spage><pages>123357-</pages><artnum>123357</artnum><issn>0024-3205</issn><issn>1879-0631</issn><eissn>1879-0631</eissn><abstract>Skeletal muscle atrophy, resulting from an imbalance in muscle protein synthesis and degradation, compromises muscle quality and function, imposing significant burdens on movement and metabolic stability. Animal models are crucial for understanding the mechanisms of skeletal muscle atrophy and developing clinical prevention and treatment strategies. Zebrafish, as small aquatic vertebrates, exhibit high genetic homology with humans and offer advantages such as rapid reproduction, development, and transparent embryos. Their physiological and anatomical similarities to mammals, including a substantial proportion of skeletal muscle and observable swimming behavior reflecting body dysfunction, make zebrafish an ideal model for studying skeletal muscle-related diseases. This review outlines the development of zebrafish skeletal muscle and highlights key pathways regulating muscle proteins, emphasizing their anatomical and genetic consistency with humans. Various zebrafish models of skeletal muscle atrophy created through physical, chemical, and gene-editing methods are systematically summarized. Current challenges and proposed improvement strategies are also discussed to enhance the reliability and applicability of zebrafish models, providing a comprehensive reference for advancing research on skeletal muscle atrophy. [Display omitted] •Muscle atrophy is common in chronic diseases, significantly impacting patient health.•Zebrafish have skeletal muscle similar to humans, ideal for atrophy studies.•Zebrafish swimming behavior indicates muscle health and function accurately.•Review covers diverse zebrafish models for muscle atrophy, including genetic methods.•Insights on new methods for modeling muscle atrophy and evaluating treatments</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>39756508</pmid><doi>10.1016/j.lfs.2024.123357</doi></addata></record>
fulltext fulltext
identifier ISSN: 0024-3205
ispartof Life sciences (1973), 2025-02, Vol.362, p.123357, Article 123357
issn 0024-3205
1879-0631
1879-0631
language eng
recordid cdi_proquest_miscellaneous_3151877097
source MEDLINE; Elsevier ScienceDirect Journals Collection
subjects Animals
Disease Models, Animal
Humans
Muscle disease
Muscle protein
Muscle Proteins - genetics
Muscle Proteins - metabolism
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Muscular Atrophy - metabolism
Muscular Atrophy - pathology
Muscular Atrophy - therapy
Skeletal muscle atrophy
Zebrafish
title Utilizing zebrafish models to elucidate mechanisms and develop therapies for skeletal muscle atrophy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20zebrafish%20models%20to%20elucidate%20mechanisms%20and%20develop%20therapies%20for%20skeletal%20muscle%20atrophy&rft.jtitle=Life%20sciences%20(1973)&rft.au=Zhao,%20Jing&rft.date=2025-02-01&rft.volume=362&rft.spage=123357&rft.pages=123357-&rft.artnum=123357&rft.issn=0024-3205&rft.eissn=1879-0631&rft_id=info:doi/10.1016/j.lfs.2024.123357&rft_dat=%3Cproquest_cross%3E3151877097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151877097&rft_id=info:pmid/39756508&rft_els_id=S0024320524009470&rfr_iscdi=true