Chemotherapy-Induced Cell-Surface GRP78 Expression as a Prognostic Marker for Invasiveness of Metastatic Triple-Negative Breast Cancer

Metastasis remains the leading cause (90%) of cancer-related mortality, especially in metastatic triple-negative breast cancer (TNBC). Improved understanding of molecular drivers in the metastatic cascade is crucial, to find accurate prognostic markers for invasiveness after chemotherapy treatment....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2025-01
Hauptverfasser: Alvarez-Elizondo, Martha B, Raiter, Annat, Yerushalmi, Rinat, Weihs, Daphne
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Annals of biomedical engineering
container_volume
creator Alvarez-Elizondo, Martha B
Raiter, Annat
Yerushalmi, Rinat
Weihs, Daphne
description Metastasis remains the leading cause (90%) of cancer-related mortality, especially in metastatic triple-negative breast cancer (TNBC). Improved understanding of molecular drivers in the metastatic cascade is crucial, to find accurate prognostic markers for invasiveness after chemotherapy treatment. Current breast cancer chemotherapy treatments include doxorubicin and paclitaxel, inducing various effects, such as the unfolded protein response (UPR). The key regulator of the UPR is the 78-kDa glucose-regulated protein (GRP78), which is associated with metastatic disease, although, its expression level in the context of invasiveness is still controversial. We evaluate doxorubicin effects on TNBC cells, identifying GRP78 subpopulations linked to invasiveness. Specifically, we evaluate the motility and invasiveness of GRP78 positive vs. negative cell subpopulations by two different assays: the in vitro Boyden chamber migration assay and our innovative, rapid (2-3 h) clinically relevant, mechanobiology-based invasiveness assay. We validate chemotherapy-induced increase in the subpopulation of cell-surface GRP78(+) in two human, metastatic TNBC cell lines: MDA-MB-231 and MDA-MB-468. The GRP78(+) cell subpopulation exhibits reduced invasiveness and metastatic potential, as compared to whole-population control and to the GRP78(-) cell subpopulation, which are both highly invasive. Thus, using our innovative, clinically relevant assay, we rapidly (on clinical timescale) validate that GRP78(-) cells are likely linked with invasiveness, yet also demonstrate that combination of the GRP78(+) and GRP78(-) cells could increase the overall metastatic potential. Our results and approach could provide patient-personalized predictive marker for the expected benefits of chemotherapy in TNBC patients and potentially reveal non-responders to chemotherapy while also allowing evaluation of the clinical risk for metastasis.
doi_str_mv 10.1007/s10439-024-03673-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151876278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151876278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-1bcdec0b1b0720045502787a83033f2ce7ac389253ea0fd05428e06f97fd6bbe3</originalsourceid><addsrcrecordid>eNo9kMFO3DAQhq2KqrvQvkAPyEcubsdxEjvHEgFdiQXUbs-W44whdDcOdrICHoDnxnSXnmZG880vzUfIVw7fOID8HjnkomKQ5QxEKQV7_kDmvEhNVarygMwBKmBlVeYzchjjPQDnShSfyExUMmGCz8lLfYcbP95hMMMTW_TtZLGlNa7X7PcUnLFIL37dSEXPHoeAMXa-pyZSQ2-Cv-19HDtLlyb8xUCdD3TRb03sttgnlHpHlziaOJo3ahW6YY3sCm_TuEV6GjCtaG16i-Ez-ejMOuKXfT0if87PVvVPdnl9sah_XDLLVT4y3tgWLTS8AZkB5EUBmVTSKAFCuMyiNFaoKisEGnAtFHmmEEpXSdeWTYPiiJzscofgHyaMo9500aZvTY9-ilrwgitZptCEZjvUBh9jQKeH0G1MeNIc9Jt_vfOvk3_9z79-TkfH-_yp2WD7_-RduHgFECiCXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151876278</pqid></control><display><type>article</type><title>Chemotherapy-Induced Cell-Surface GRP78 Expression as a Prognostic Marker for Invasiveness of Metastatic Triple-Negative Breast Cancer</title><source>Springer Nature - Complete Springer Journals</source><creator>Alvarez-Elizondo, Martha B ; Raiter, Annat ; Yerushalmi, Rinat ; Weihs, Daphne</creator><creatorcontrib>Alvarez-Elizondo, Martha B ; Raiter, Annat ; Yerushalmi, Rinat ; Weihs, Daphne</creatorcontrib><description>Metastasis remains the leading cause (90%) of cancer-related mortality, especially in metastatic triple-negative breast cancer (TNBC). Improved understanding of molecular drivers in the metastatic cascade is crucial, to find accurate prognostic markers for invasiveness after chemotherapy treatment. Current breast cancer chemotherapy treatments include doxorubicin and paclitaxel, inducing various effects, such as the unfolded protein response (UPR). The key regulator of the UPR is the 78-kDa glucose-regulated protein (GRP78), which is associated with metastatic disease, although, its expression level in the context of invasiveness is still controversial. We evaluate doxorubicin effects on TNBC cells, identifying GRP78 subpopulations linked to invasiveness. Specifically, we evaluate the motility and invasiveness of GRP78 positive vs. negative cell subpopulations by two different assays: the in vitro Boyden chamber migration assay and our innovative, rapid (2-3 h) clinically relevant, mechanobiology-based invasiveness assay. We validate chemotherapy-induced increase in the subpopulation of cell-surface GRP78(+) in two human, metastatic TNBC cell lines: MDA-MB-231 and MDA-MB-468. The GRP78(+) cell subpopulation exhibits reduced invasiveness and metastatic potential, as compared to whole-population control and to the GRP78(-) cell subpopulation, which are both highly invasive. Thus, using our innovative, clinically relevant assay, we rapidly (on clinical timescale) validate that GRP78(-) cells are likely linked with invasiveness, yet also demonstrate that combination of the GRP78(+) and GRP78(-) cells could increase the overall metastatic potential. Our results and approach could provide patient-personalized predictive marker for the expected benefits of chemotherapy in TNBC patients and potentially reveal non-responders to chemotherapy while also allowing evaluation of the clinical risk for metastasis.</description><identifier>ISSN: 0090-6964</identifier><identifier>ISSN: 1573-9686</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-024-03673-z</identifier><identifier>PMID: 39757331</identifier><language>eng</language><publisher>United States</publisher><ispartof>Annals of biomedical engineering, 2025-01</ispartof><rights>2025. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c184t-1bcdec0b1b0720045502787a83033f2ce7ac389253ea0fd05428e06f97fd6bbe3</cites><orcidid>0000-0002-9670-3418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39757331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarez-Elizondo, Martha B</creatorcontrib><creatorcontrib>Raiter, Annat</creatorcontrib><creatorcontrib>Yerushalmi, Rinat</creatorcontrib><creatorcontrib>Weihs, Daphne</creatorcontrib><title>Chemotherapy-Induced Cell-Surface GRP78 Expression as a Prognostic Marker for Invasiveness of Metastatic Triple-Negative Breast Cancer</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><description>Metastasis remains the leading cause (90%) of cancer-related mortality, especially in metastatic triple-negative breast cancer (TNBC). Improved understanding of molecular drivers in the metastatic cascade is crucial, to find accurate prognostic markers for invasiveness after chemotherapy treatment. Current breast cancer chemotherapy treatments include doxorubicin and paclitaxel, inducing various effects, such as the unfolded protein response (UPR). The key regulator of the UPR is the 78-kDa glucose-regulated protein (GRP78), which is associated with metastatic disease, although, its expression level in the context of invasiveness is still controversial. We evaluate doxorubicin effects on TNBC cells, identifying GRP78 subpopulations linked to invasiveness. Specifically, we evaluate the motility and invasiveness of GRP78 positive vs. negative cell subpopulations by two different assays: the in vitro Boyden chamber migration assay and our innovative, rapid (2-3 h) clinically relevant, mechanobiology-based invasiveness assay. We validate chemotherapy-induced increase in the subpopulation of cell-surface GRP78(+) in two human, metastatic TNBC cell lines: MDA-MB-231 and MDA-MB-468. The GRP78(+) cell subpopulation exhibits reduced invasiveness and metastatic potential, as compared to whole-population control and to the GRP78(-) cell subpopulation, which are both highly invasive. Thus, using our innovative, clinically relevant assay, we rapidly (on clinical timescale) validate that GRP78(-) cells are likely linked with invasiveness, yet also demonstrate that combination of the GRP78(+) and GRP78(-) cells could increase the overall metastatic potential. Our results and approach could provide patient-personalized predictive marker for the expected benefits of chemotherapy in TNBC patients and potentially reveal non-responders to chemotherapy while also allowing evaluation of the clinical risk for metastasis.</description><issn>0090-6964</issn><issn>1573-9686</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kMFO3DAQhq2KqrvQvkAPyEcubsdxEjvHEgFdiQXUbs-W44whdDcOdrICHoDnxnSXnmZG880vzUfIVw7fOID8HjnkomKQ5QxEKQV7_kDmvEhNVarygMwBKmBlVeYzchjjPQDnShSfyExUMmGCz8lLfYcbP95hMMMTW_TtZLGlNa7X7PcUnLFIL37dSEXPHoeAMXa-pyZSQ2-Cv-19HDtLlyb8xUCdD3TRb03sttgnlHpHlziaOJo3ahW6YY3sCm_TuEV6GjCtaG16i-Ez-ejMOuKXfT0if87PVvVPdnl9sah_XDLLVT4y3tgWLTS8AZkB5EUBmVTSKAFCuMyiNFaoKisEGnAtFHmmEEpXSdeWTYPiiJzscofgHyaMo9500aZvTY9-ilrwgitZptCEZjvUBh9jQKeH0G1MeNIc9Jt_vfOvk3_9z79-TkfH-_yp2WD7_-RduHgFECiCXA</recordid><startdate>20250105</startdate><enddate>20250105</enddate><creator>Alvarez-Elizondo, Martha B</creator><creator>Raiter, Annat</creator><creator>Yerushalmi, Rinat</creator><creator>Weihs, Daphne</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9670-3418</orcidid></search><sort><creationdate>20250105</creationdate><title>Chemotherapy-Induced Cell-Surface GRP78 Expression as a Prognostic Marker for Invasiveness of Metastatic Triple-Negative Breast Cancer</title><author>Alvarez-Elizondo, Martha B ; Raiter, Annat ; Yerushalmi, Rinat ; Weihs, Daphne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-1bcdec0b1b0720045502787a83033f2ce7ac389253ea0fd05428e06f97fd6bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez-Elizondo, Martha B</creatorcontrib><creatorcontrib>Raiter, Annat</creatorcontrib><creatorcontrib>Yerushalmi, Rinat</creatorcontrib><creatorcontrib>Weihs, Daphne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez-Elizondo, Martha B</au><au>Raiter, Annat</au><au>Yerushalmi, Rinat</au><au>Weihs, Daphne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemotherapy-Induced Cell-Surface GRP78 Expression as a Prognostic Marker for Invasiveness of Metastatic Triple-Negative Breast Cancer</atitle><jtitle>Annals of biomedical engineering</jtitle><addtitle>Ann Biomed Eng</addtitle><date>2025-01-05</date><risdate>2025</risdate><issn>0090-6964</issn><issn>1573-9686</issn><eissn>1573-9686</eissn><abstract>Metastasis remains the leading cause (90%) of cancer-related mortality, especially in metastatic triple-negative breast cancer (TNBC). Improved understanding of molecular drivers in the metastatic cascade is crucial, to find accurate prognostic markers for invasiveness after chemotherapy treatment. Current breast cancer chemotherapy treatments include doxorubicin and paclitaxel, inducing various effects, such as the unfolded protein response (UPR). The key regulator of the UPR is the 78-kDa glucose-regulated protein (GRP78), which is associated with metastatic disease, although, its expression level in the context of invasiveness is still controversial. We evaluate doxorubicin effects on TNBC cells, identifying GRP78 subpopulations linked to invasiveness. Specifically, we evaluate the motility and invasiveness of GRP78 positive vs. negative cell subpopulations by two different assays: the in vitro Boyden chamber migration assay and our innovative, rapid (2-3 h) clinically relevant, mechanobiology-based invasiveness assay. We validate chemotherapy-induced increase in the subpopulation of cell-surface GRP78(+) in two human, metastatic TNBC cell lines: MDA-MB-231 and MDA-MB-468. The GRP78(+) cell subpopulation exhibits reduced invasiveness and metastatic potential, as compared to whole-population control and to the GRP78(-) cell subpopulation, which are both highly invasive. Thus, using our innovative, clinically relevant assay, we rapidly (on clinical timescale) validate that GRP78(-) cells are likely linked with invasiveness, yet also demonstrate that combination of the GRP78(+) and GRP78(-) cells could increase the overall metastatic potential. Our results and approach could provide patient-personalized predictive marker for the expected benefits of chemotherapy in TNBC patients and potentially reveal non-responders to chemotherapy while also allowing evaluation of the clinical risk for metastasis.</abstract><cop>United States</cop><pmid>39757331</pmid><doi>10.1007/s10439-024-03673-z</doi><orcidid>https://orcid.org/0000-0002-9670-3418</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2025-01
issn 0090-6964
1573-9686
1573-9686
language eng
recordid cdi_proquest_miscellaneous_3151876278
source Springer Nature - Complete Springer Journals
title Chemotherapy-Induced Cell-Surface GRP78 Expression as a Prognostic Marker for Invasiveness of Metastatic Triple-Negative Breast Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemotherapy-Induced%20Cell-Surface%20GRP78%20Expression%20as%20a%20Prognostic%20Marker%20for%20Invasiveness%20of%20Metastatic%20Triple-Negative%20Breast%20Cancer&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Alvarez-Elizondo,%20Martha%20B&rft.date=2025-01-05&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-024-03673-z&rft_dat=%3Cproquest_cross%3E3151876278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151876278&rft_id=info:pmid/39757331&rfr_iscdi=true