Proposing lithium pump mechanism for observing Ag-Li two-phase interface reaction of in-situ Li-O2 battery by two-step method
In this study, we established a new lithiation-oxidation method (two-step method) to explore the Ag-Li solid–solid interface reaction mechanism during the discharge process in a lithium oxygen nanobattery assembled within a spherical aberration-corrected transmission electron microscope. A continuou...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2025-04, Vol.683 (Pt 2), p.995-1002 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1002 |
---|---|
container_issue | Pt 2 |
container_start_page | 995 |
container_title | Journal of colloid and interface science |
container_volume | 683 |
creator | Wen, Yixuan He, Qizhen Ding, Shuaijun Zhou, Wei Deng, Lei Zhang, Liqiang Shen, Tongde Yang, Qingxiang Jia, Peng Qiao, Yuqing |
description | In this study, we established a new lithiation-oxidation method (two-step method) to explore the Ag-Li solid–solid interface reaction mechanism during the discharge process in a lithium oxygen nanobattery assembled within a spherical aberration-corrected transmission electron microscope. A continuous Ag-Ag3Li10-Ag solid–solid interface conversion process has been observed during the lithiation reaction, clarifying a typical lithium pump effect.
[Display omitted]
•We established a new lithiation-oxidation method (two-step method) to explore the Ag-Li solid–solid interface reaction mechanism during the discharge process in a Li-O2 nanobattery assembled within a spherical aberration-corrected ETEM.•The intermediate product Ag3Li10 accelerates the kinetic performance of the interface reaction.•A continuous Ag-Ag3Li10-Ag solid-solid interface conversion process has been observed during the reaction, clarifying a typical lithium pump effect.
Silver (Ag) plays an important role as a cathode catalyst in lithium-oxygen batteries (Li-O2 batteries). However, the catalytic mechanism of Ag remains unclear. Despite efforts dedicated to studying interfacial reactions, observing efficient reactions and ion transport at the Ag-Li solid–solid interface continues to be a challenge. Here, we used Ag nanowires (Ag NWs) as working electrodes, creating a lithiation-oxidation microenvironment within spherical aberration-corrected transmission electron microscopy (ETEM) through a two-step method to investigate the reaction mechanisms at the Ag-Li interface. The lithiation process generates Ag3Li10, while the oxidation process precipitates Ag nanoparticles (Ag NPs). The alternating reactions of Ag-Ag3Li10-Ag form a cycle process, elucidating the transport pathway of Li+ at the Ag-Li solid–solid interface during discharge process and demonstrating a typical lithium pump effect. Density Functional Theory (DFT) calculations also confirm these results. This work provides novel insights into the interfacial mechanisms of Ag catalysts in Li-O2 batteries, offering valuable guidance for strategies to monitor and control complex, multi-step interfacial reactions. |
doi_str_mv | 10.1016/j.jcis.2024.12.222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151875401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724030765</els_id><sourcerecordid>3151875401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1291-3159a9ff8189f4dd97a156e67db98b9f4d83dd56f0b8b535896d60567bc0b6ec3</originalsourceid><addsrcrecordid>eNp9kD2P1DAQhi0EEsvBH6BySePgcdZJLNGcTnxJK90VR235Y3zr1SYOtnNoC_47CUtNNdLoed7RvIS8B94Ah-7jqTm5WBrBxb4B0QghXpAdcCVZD7x9SXacC2CqV_1r8qaUE-cAUqod-f2Q05xKnJ7oOdZjXEY6L-NMR3RHM8Uy0pAyTbZgft6g2yd2iLT-Smw-moI0ThVzMA5pRuNqTBNNYd2yEutCD5HdC2pNXaELtZe_Yqm45ddj8m_Jq2DOBd_9mzfkx5fPj3ff2OH-6_e72wNzIBSwFqQyKoQBBhX23qvegOyw671Vg91WQ-u97AK3g5WtHFTnOy673jpuO3TtDflwzZ1z-rlgqXqMxeH5bCZMS9HrARh6ueewouKKupxKyRj0nONo8kUD11vX-qS3rvXWtQah165X6dNVwvWJ54hZFxdxcuhjRle1T_F_-h8QK4lH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151875401</pqid></control><display><type>article</type><title>Proposing lithium pump mechanism for observing Ag-Li two-phase interface reaction of in-situ Li-O2 battery by two-step method</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Wen, Yixuan ; He, Qizhen ; Ding, Shuaijun ; Zhou, Wei ; Deng, Lei ; Zhang, Liqiang ; Shen, Tongde ; Yang, Qingxiang ; Jia, Peng ; Qiao, Yuqing</creator><creatorcontrib>Wen, Yixuan ; He, Qizhen ; Ding, Shuaijun ; Zhou, Wei ; Deng, Lei ; Zhang, Liqiang ; Shen, Tongde ; Yang, Qingxiang ; Jia, Peng ; Qiao, Yuqing</creatorcontrib><description>In this study, we established a new lithiation-oxidation method (two-step method) to explore the Ag-Li solid–solid interface reaction mechanism during the discharge process in a lithium oxygen nanobattery assembled within a spherical aberration-corrected transmission electron microscope. A continuous Ag-Ag3Li10-Ag solid–solid interface conversion process has been observed during the lithiation reaction, clarifying a typical lithium pump effect.
[Display omitted]
•We established a new lithiation-oxidation method (two-step method) to explore the Ag-Li solid–solid interface reaction mechanism during the discharge process in a Li-O2 nanobattery assembled within a spherical aberration-corrected ETEM.•The intermediate product Ag3Li10 accelerates the kinetic performance of the interface reaction.•A continuous Ag-Ag3Li10-Ag solid-solid interface conversion process has been observed during the reaction, clarifying a typical lithium pump effect.
Silver (Ag) plays an important role as a cathode catalyst in lithium-oxygen batteries (Li-O2 batteries). However, the catalytic mechanism of Ag remains unclear. Despite efforts dedicated to studying interfacial reactions, observing efficient reactions and ion transport at the Ag-Li solid–solid interface continues to be a challenge. Here, we used Ag nanowires (Ag NWs) as working electrodes, creating a lithiation-oxidation microenvironment within spherical aberration-corrected transmission electron microscopy (ETEM) through a two-step method to investigate the reaction mechanisms at the Ag-Li interface. The lithiation process generates Ag3Li10, while the oxidation process precipitates Ag nanoparticles (Ag NPs). The alternating reactions of Ag-Ag3Li10-Ag form a cycle process, elucidating the transport pathway of Li+ at the Ag-Li solid–solid interface during discharge process and demonstrating a typical lithium pump effect. Density Functional Theory (DFT) calculations also confirm these results. This work provides novel insights into the interfacial mechanisms of Ag catalysts in Li-O2 batteries, offering valuable guidance for strategies to monitor and control complex, multi-step interfacial reactions.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.12.222</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Interface reaction ; Li-O2 battery ; Lithium pump ; Two-step method</subject><ispartof>Journal of colloid and interface science, 2025-04, Vol.683 (Pt 2), p.995-1002</ispartof><rights>2025 Elsevier Inc.</rights><rights>Copyright © 2025 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1291-3159a9ff8189f4dd97a156e67db98b9f4d83dd56f0b8b535896d60567bc0b6ec3</cites><orcidid>0000-0002-0391-3361 ; 0000-0001-5724-5517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.12.222$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Wen, Yixuan</creatorcontrib><creatorcontrib>He, Qizhen</creatorcontrib><creatorcontrib>Ding, Shuaijun</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Zhang, Liqiang</creatorcontrib><creatorcontrib>Shen, Tongde</creatorcontrib><creatorcontrib>Yang, Qingxiang</creatorcontrib><creatorcontrib>Jia, Peng</creatorcontrib><creatorcontrib>Qiao, Yuqing</creatorcontrib><title>Proposing lithium pump mechanism for observing Ag-Li two-phase interface reaction of in-situ Li-O2 battery by two-step method</title><title>Journal of colloid and interface science</title><description>In this study, we established a new lithiation-oxidation method (two-step method) to explore the Ag-Li solid–solid interface reaction mechanism during the discharge process in a lithium oxygen nanobattery assembled within a spherical aberration-corrected transmission electron microscope. A continuous Ag-Ag3Li10-Ag solid–solid interface conversion process has been observed during the lithiation reaction, clarifying a typical lithium pump effect.
[Display omitted]
•We established a new lithiation-oxidation method (two-step method) to explore the Ag-Li solid–solid interface reaction mechanism during the discharge process in a Li-O2 nanobattery assembled within a spherical aberration-corrected ETEM.•The intermediate product Ag3Li10 accelerates the kinetic performance of the interface reaction.•A continuous Ag-Ag3Li10-Ag solid-solid interface conversion process has been observed during the reaction, clarifying a typical lithium pump effect.
Silver (Ag) plays an important role as a cathode catalyst in lithium-oxygen batteries (Li-O2 batteries). However, the catalytic mechanism of Ag remains unclear. Despite efforts dedicated to studying interfacial reactions, observing efficient reactions and ion transport at the Ag-Li solid–solid interface continues to be a challenge. Here, we used Ag nanowires (Ag NWs) as working electrodes, creating a lithiation-oxidation microenvironment within spherical aberration-corrected transmission electron microscopy (ETEM) through a two-step method to investigate the reaction mechanisms at the Ag-Li interface. The lithiation process generates Ag3Li10, while the oxidation process precipitates Ag nanoparticles (Ag NPs). The alternating reactions of Ag-Ag3Li10-Ag form a cycle process, elucidating the transport pathway of Li+ at the Ag-Li solid–solid interface during discharge process and demonstrating a typical lithium pump effect. Density Functional Theory (DFT) calculations also confirm these results. This work provides novel insights into the interfacial mechanisms of Ag catalysts in Li-O2 batteries, offering valuable guidance for strategies to monitor and control complex, multi-step interfacial reactions.</description><subject>Interface reaction</subject><subject>Li-O2 battery</subject><subject>Lithium pump</subject><subject>Two-step method</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kD2P1DAQhi0EEsvBH6BySePgcdZJLNGcTnxJK90VR235Y3zr1SYOtnNoC_47CUtNNdLoed7RvIS8B94Ah-7jqTm5WBrBxb4B0QghXpAdcCVZD7x9SXacC2CqV_1r8qaUE-cAUqod-f2Q05xKnJ7oOdZjXEY6L-NMR3RHM8Uy0pAyTbZgft6g2yd2iLT-Smw-moI0ThVzMA5pRuNqTBNNYd2yEutCD5HdC2pNXaELtZe_Yqm45ddj8m_Jq2DOBd_9mzfkx5fPj3ff2OH-6_e72wNzIBSwFqQyKoQBBhX23qvegOyw671Vg91WQ-u97AK3g5WtHFTnOy673jpuO3TtDflwzZ1z-rlgqXqMxeH5bCZMS9HrARh6ueewouKKupxKyRj0nONo8kUD11vX-qS3rvXWtQah165X6dNVwvWJ54hZFxdxcuhjRle1T_F_-h8QK4lH</recordid><startdate>202504</startdate><enddate>202504</enddate><creator>Wen, Yixuan</creator><creator>He, Qizhen</creator><creator>Ding, Shuaijun</creator><creator>Zhou, Wei</creator><creator>Deng, Lei</creator><creator>Zhang, Liqiang</creator><creator>Shen, Tongde</creator><creator>Yang, Qingxiang</creator><creator>Jia, Peng</creator><creator>Qiao, Yuqing</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0391-3361</orcidid><orcidid>https://orcid.org/0000-0001-5724-5517</orcidid></search><sort><creationdate>202504</creationdate><title>Proposing lithium pump mechanism for observing Ag-Li two-phase interface reaction of in-situ Li-O2 battery by two-step method</title><author>Wen, Yixuan ; He, Qizhen ; Ding, Shuaijun ; Zhou, Wei ; Deng, Lei ; Zhang, Liqiang ; Shen, Tongde ; Yang, Qingxiang ; Jia, Peng ; Qiao, Yuqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1291-3159a9ff8189f4dd97a156e67db98b9f4d83dd56f0b8b535896d60567bc0b6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Interface reaction</topic><topic>Li-O2 battery</topic><topic>Lithium pump</topic><topic>Two-step method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Yixuan</creatorcontrib><creatorcontrib>He, Qizhen</creatorcontrib><creatorcontrib>Ding, Shuaijun</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Zhang, Liqiang</creatorcontrib><creatorcontrib>Shen, Tongde</creatorcontrib><creatorcontrib>Yang, Qingxiang</creatorcontrib><creatorcontrib>Jia, Peng</creatorcontrib><creatorcontrib>Qiao, Yuqing</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Yixuan</au><au>He, Qizhen</au><au>Ding, Shuaijun</au><au>Zhou, Wei</au><au>Deng, Lei</au><au>Zhang, Liqiang</au><au>Shen, Tongde</au><au>Yang, Qingxiang</au><au>Jia, Peng</au><au>Qiao, Yuqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proposing lithium pump mechanism for observing Ag-Li two-phase interface reaction of in-situ Li-O2 battery by two-step method</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2025-04</date><risdate>2025</risdate><volume>683</volume><issue>Pt 2</issue><spage>995</spage><epage>1002</epage><pages>995-1002</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>In this study, we established a new lithiation-oxidation method (two-step method) to explore the Ag-Li solid–solid interface reaction mechanism during the discharge process in a lithium oxygen nanobattery assembled within a spherical aberration-corrected transmission electron microscope. A continuous Ag-Ag3Li10-Ag solid–solid interface conversion process has been observed during the lithiation reaction, clarifying a typical lithium pump effect.
[Display omitted]
•We established a new lithiation-oxidation method (two-step method) to explore the Ag-Li solid–solid interface reaction mechanism during the discharge process in a Li-O2 nanobattery assembled within a spherical aberration-corrected ETEM.•The intermediate product Ag3Li10 accelerates the kinetic performance of the interface reaction.•A continuous Ag-Ag3Li10-Ag solid-solid interface conversion process has been observed during the reaction, clarifying a typical lithium pump effect.
Silver (Ag) plays an important role as a cathode catalyst in lithium-oxygen batteries (Li-O2 batteries). However, the catalytic mechanism of Ag remains unclear. Despite efforts dedicated to studying interfacial reactions, observing efficient reactions and ion transport at the Ag-Li solid–solid interface continues to be a challenge. Here, we used Ag nanowires (Ag NWs) as working electrodes, creating a lithiation-oxidation microenvironment within spherical aberration-corrected transmission electron microscopy (ETEM) through a two-step method to investigate the reaction mechanisms at the Ag-Li interface. The lithiation process generates Ag3Li10, while the oxidation process precipitates Ag nanoparticles (Ag NPs). The alternating reactions of Ag-Ag3Li10-Ag form a cycle process, elucidating the transport pathway of Li+ at the Ag-Li solid–solid interface during discharge process and demonstrating a typical lithium pump effect. Density Functional Theory (DFT) calculations also confirm these results. This work provides novel insights into the interfacial mechanisms of Ag catalysts in Li-O2 batteries, offering valuable guidance for strategies to monitor and control complex, multi-step interfacial reactions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.12.222</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0391-3361</orcidid><orcidid>https://orcid.org/0000-0001-5724-5517</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2025-04, Vol.683 (Pt 2), p.995-1002 |
issn | 0021-9797 1095-7103 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3151875401 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Interface reaction Li-O2 battery Lithium pump Two-step method |
title | Proposing lithium pump mechanism for observing Ag-Li two-phase interface reaction of in-situ Li-O2 battery by two-step method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proposing%20lithium%20pump%20mechanism%20for%20observing%20Ag-Li%20two-phase%20interface%20reaction%20of%20in-situ%20Li-O2%20battery%20by%20two-step%20method&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wen,%20Yixuan&rft.date=2025-04&rft.volume=683&rft.issue=Pt%202&rft.spage=995&rft.epage=1002&rft.pages=995-1002&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.12.222&rft_dat=%3Cproquest_cross%3E3151875401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151875401&rft_id=info:pmid/&rft_els_id=S0021979724030765&rfr_iscdi=true |