Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance
Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila m...
Gespeichert in:
Veröffentlicht in: | Nature communications 2025-01, Vol.16 (1), p.399-11, Article 399 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 399 |
container_title | Nature communications |
container_volume | 16 |
creator | Nelson, Jonathan O. Slicko, Alyssa Raz, Amelie A. Yamashita, Yukiko M. |
description | Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in
Drosophila melanogaster
, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing, we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced
InR
expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
The germline maintains unstable essential ribosomal DNA (rDNA) repeats to ensure each generation inherits a functional genome, yet it’s unclear how this activity is controlled. Here, the authors find the insulin receptor governs germline rDNA maintenance in response to genetic and dietary cues. |
doi_str_mv | 10.1038/s41467-024-55725-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151583889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cb141158e24a4c6d9b6ded69065a831c</doaj_id><sourcerecordid>3151583889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-5dc443633f9c0d1cb5eae82de63c517c3486cb2de303cd6b95164dddebc3c7923</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIVqV_gAOyxIVLwI4_kpxQVT66UgUSgrPljGfTrBJ7sROg_55h05aWA754xu_N84z9iuK54K8Fl82brIQydckrVWpdV7o0j4rjiitRirqSj-_FR8VpzjtOS7aiUeppcSTbmoqkPi5-bkJexiGwPPTBUdCzhP0yuhkz-1JRMqc4JxfyPuYYGP7aJ8x5oHCOLCa4wkzwjOxA6jEgZQS7kaV3n84YxP01C8vUYWKTG8KMwQXAZ8WTrRsznt7sJ8W3D--_nl-Ul58_bs7PLkuoWmlK7UEpaaTctsC9gE6jw6byaCRoUYNUjYGOcskleNO1WhjlvccOJNRtJU-Kzarro9vZfRoml65tdIM9HMTUW5fmAUa00AklhG6wUk6B8W1nPHrTcqNdIwWQ1ttVa790E3rAQDOPD0QfImG4sn38YYWoORe8JoVXNwopfl_o5ew0ZMBxdAHjkq0UmhqQTdMS9eU_1F1cEj3rylI1_b4gVrWyIMWcE27vuhHc_vGJXX1iySf24BNrqOjF_TnuSm5dQQS5EjJBocf09-7_yP4GuZLLyg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151474671</pqid></control><display><type>article</type><title>Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance</title><source>SpringerOpen</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed (Medline)</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><source>Nature出版集团开放获取期刊</source><creator>Nelson, Jonathan O. ; Slicko, Alyssa ; Raz, Amelie A. ; Yamashita, Yukiko M.</creator><creatorcontrib>Nelson, Jonathan O. ; Slicko, Alyssa ; Raz, Amelie A. ; Yamashita, Yukiko M.</creatorcontrib><description>Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in
Drosophila melanogaster
, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing, we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced
InR
expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
The germline maintains unstable essential ribosomal DNA (rDNA) repeats to ensure each generation inherits a functional genome, yet it’s unclear how this activity is controlled. Here, the authors find the insulin receptor governs germline rDNA maintenance in response to genetic and dietary cues.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-55725-6</identifier><identifier>PMID: 39755735</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/51 ; 13/89 ; 14 ; 14/19 ; 14/32 ; 14/35 ; 38 ; 38/22 ; 38/77 ; 49/39 ; 49/62 ; 49/91 ; 631/208/200 ; 631/208/211 ; 631/80/86/2367 ; Copy number ; Deoxyribonucleic acid ; DNA ; DNA damage ; Gene expression ; Gene sequencing ; Genomes ; Humanities and Social Sciences ; Insulin ; Insulin receptors ; Maintenance ; multidisciplinary ; Receptors ; Ribosomal DNA ; Science ; Science (multidisciplinary) ; Sister chromatid exchange ; Stem cells</subject><ispartof>Nature communications, 2025-01, Vol.16 (1), p.399-11, Article 399</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Nature Publishing Group 2025</rights><rights>The Author(s) 2025 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2936-5dc443633f9c0d1cb5eae82de63c517c3486cb2de303cd6b95164dddebc3c7923</cites><orcidid>0000-0002-4651-0626 ; 0000-0001-9831-745X ; 0000-0001-7719-9941 ; 0000-0001-5541-0216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700107/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700107/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39755735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nelson, Jonathan O.</creatorcontrib><creatorcontrib>Slicko, Alyssa</creatorcontrib><creatorcontrib>Raz, Amelie A.</creatorcontrib><creatorcontrib>Yamashita, Yukiko M.</creatorcontrib><title>Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in
Drosophila melanogaster
, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing, we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced
InR
expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
The germline maintains unstable essential ribosomal DNA (rDNA) repeats to ensure each generation inherits a functional genome, yet it’s unclear how this activity is controlled. Here, the authors find the insulin receptor governs germline rDNA maintenance in response to genetic and dietary cues.</description><subject>13/1</subject><subject>13/51</subject><subject>13/89</subject><subject>14</subject><subject>14/19</subject><subject>14/32</subject><subject>14/35</subject><subject>38</subject><subject>38/22</subject><subject>38/77</subject><subject>49/39</subject><subject>49/62</subject><subject>49/91</subject><subject>631/208/200</subject><subject>631/208/211</subject><subject>631/80/86/2367</subject><subject>Copy number</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Insulin</subject><subject>Insulin receptors</subject><subject>Maintenance</subject><subject>multidisciplinary</subject><subject>Receptors</subject><subject>Ribosomal DNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sister chromatid exchange</subject><subject>Stem cells</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQjRCIVqV_gAOyxIVLwI4_kpxQVT66UgUSgrPljGfTrBJ7sROg_55h05aWA754xu_N84z9iuK54K8Fl82brIQydckrVWpdV7o0j4rjiitRirqSj-_FR8VpzjtOS7aiUeppcSTbmoqkPi5-bkJexiGwPPTBUdCzhP0yuhkz-1JRMqc4JxfyPuYYGP7aJ8x5oHCOLCa4wkzwjOxA6jEgZQS7kaV3n84YxP01C8vUYWKTG8KMwQXAZ8WTrRsznt7sJ8W3D--_nl-Ul58_bs7PLkuoWmlK7UEpaaTctsC9gE6jw6byaCRoUYNUjYGOcskleNO1WhjlvccOJNRtJU-Kzarro9vZfRoml65tdIM9HMTUW5fmAUa00AklhG6wUk6B8W1nPHrTcqNdIwWQ1ttVa790E3rAQDOPD0QfImG4sn38YYWoORe8JoVXNwopfl_o5ew0ZMBxdAHjkq0UmhqQTdMS9eU_1F1cEj3rylI1_b4gVrWyIMWcE27vuhHc_vGJXX1iySf24BNrqOjF_TnuSm5dQQS5EjJBocf09-7_yP4GuZLLyg</recordid><startdate>20250104</startdate><enddate>20250104</enddate><creator>Nelson, Jonathan O.</creator><creator>Slicko, Alyssa</creator><creator>Raz, Amelie A.</creator><creator>Yamashita, Yukiko M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4651-0626</orcidid><orcidid>https://orcid.org/0000-0001-9831-745X</orcidid><orcidid>https://orcid.org/0000-0001-7719-9941</orcidid><orcidid>https://orcid.org/0000-0001-5541-0216</orcidid></search><sort><creationdate>20250104</creationdate><title>Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance</title><author>Nelson, Jonathan O. ; Slicko, Alyssa ; Raz, Amelie A. ; Yamashita, Yukiko M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-5dc443633f9c0d1cb5eae82de63c517c3486cb2de303cd6b95164dddebc3c7923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>13/1</topic><topic>13/51</topic><topic>13/89</topic><topic>14</topic><topic>14/19</topic><topic>14/32</topic><topic>14/35</topic><topic>38</topic><topic>38/22</topic><topic>38/77</topic><topic>49/39</topic><topic>49/62</topic><topic>49/91</topic><topic>631/208/200</topic><topic>631/208/211</topic><topic>631/80/86/2367</topic><topic>Copy number</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Insulin</topic><topic>Insulin receptors</topic><topic>Maintenance</topic><topic>multidisciplinary</topic><topic>Receptors</topic><topic>Ribosomal DNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sister chromatid exchange</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelson, Jonathan O.</creatorcontrib><creatorcontrib>Slicko, Alyssa</creatorcontrib><creatorcontrib>Raz, Amelie A.</creatorcontrib><creatorcontrib>Yamashita, Yukiko M.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nelson, Jonathan O.</au><au>Slicko, Alyssa</au><au>Raz, Amelie A.</au><au>Yamashita, Yukiko M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2025-01-04</date><risdate>2025</risdate><volume>16</volume><issue>1</issue><spage>399</spage><epage>11</epage><pages>399-11</pages><artnum>399</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in
Drosophila melanogaster
, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing, we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced
InR
expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
The germline maintains unstable essential ribosomal DNA (rDNA) repeats to ensure each generation inherits a functional genome, yet it’s unclear how this activity is controlled. Here, the authors find the insulin receptor governs germline rDNA maintenance in response to genetic and dietary cues.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39755735</pmid><doi>10.1038/s41467-024-55725-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4651-0626</orcidid><orcidid>https://orcid.org/0000-0001-9831-745X</orcidid><orcidid>https://orcid.org/0000-0001-7719-9941</orcidid><orcidid>https://orcid.org/0000-0001-5541-0216</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2025-01, Vol.16 (1), p.399-11, Article 399 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_3151583889 |
source | SpringerOpen; DOAJ Directory of Open Access Journals; PubMed (Medline); Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection; Nature出版集团开放获取期刊 |
subjects | 13/1 13/51 13/89 14 14/19 14/32 14/35 38 38/22 38/77 49/39 49/62 49/91 631/208/200 631/208/211 631/80/86/2367 Copy number Deoxyribonucleic acid DNA DNA damage Gene expression Gene sequencing Genomes Humanities and Social Sciences Insulin Insulin receptors Maintenance multidisciplinary Receptors Ribosomal DNA Science Science (multidisciplinary) Sister chromatid exchange Stem cells |
title | Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20signaling%20regulates%20R2%20retrotransposon%20expression%20to%20orchestrate%20transgenerational%20rDNA%20copy%20number%20maintenance&rft.jtitle=Nature%20communications&rft.au=Nelson,%20Jonathan%20O.&rft.date=2025-01-04&rft.volume=16&rft.issue=1&rft.spage=399&rft.epage=11&rft.pages=399-11&rft.artnum=399&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-55725-6&rft_dat=%3Cproquest_doaj_%3E3151583889%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151474671&rft_id=info:pmid/39755735&rft_doaj_id=oai_doaj_org_article_cb141158e24a4c6d9b6ded69065a831c&rfr_iscdi=true |