Clinical Manifestations

Frontotemporal dementia (FTD) is a common young-onset dementia. Challenges to in-person FTD evaluations (e.g., behavioral symptoms, disease rarity), highlight the need to develop remote, low-burden assessment techniques. A growing literature supports passive digital phenotyping for monitoring neurob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2024-12, Vol.20 Suppl 3, p.e090571
Hauptverfasser: Paolillo, Emily W, Casaletto, Kaitlin B, Taylor, Jack C, Heuer, Hilary W, Wise, Amy B, Dhanam, Sreya, Sanderson-Cimino, Mark E, Palacios, Brandon R, Young, J Clayton, Bui, Mai Anh, Saloner, Rowan, Dutt, Shubir, VandeBunte, Anna M, Cadwallader, Claire J, Kramer, Joel H, Kremers, Walter K, Forsberg, Leah K, Boeve, Brad F, Rosen, Howard J, Boxer, Adam L, Staffaroni, Adam M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e090571
container_title Alzheimer's & dementia
container_volume 20 Suppl 3
creator Paolillo, Emily W
Casaletto, Kaitlin B
Taylor, Jack C
Heuer, Hilary W
Wise, Amy B
Dhanam, Sreya
Sanderson-Cimino, Mark E
Palacios, Brandon R
Young, J Clayton
Bui, Mai Anh
Saloner, Rowan
Dutt, Shubir
VandeBunte, Anna M
Cadwallader, Claire J
Kramer, Joel H
Kremers, Walter K
Forsberg, Leah K
Boeve, Brad F
Rosen, Howard J
Boxer, Adam L
Staffaroni, Adam M
description Frontotemporal dementia (FTD) is a common young-onset dementia. Challenges to in-person FTD evaluations (e.g., behavioral symptoms, disease rarity), highlight the need to develop remote, low-burden assessment techniques. A growing literature supports passive digital phenotyping for monitoring neurobehavioral change. Thus, we examined the utility of passively collected data from smartphones to detect prodromal or symptomatic FTD compared to that of the Montreal Cognitive Assessment (MoCA), a common cognitive screener. 199 adults enrolled in the ALLFTD Mobile App study (mean age = 53.4 [SD = 15.2]; 58% women) completed up to 6 months of passive smartphone monitoring via the ALLFTD Mobile App. 55% were unimpaired [CDR®+NACC FTLD = 0], 22% had prodromal FTD [CDR®+NACC FTLD = 0.5], and 23% had symptomatic FTD [CDR®+NACC FTLD≥1] with a variety of syndromic presentations. Battery percentage was collected frequently (median interval = 45 min), and total daily battery usage was calculated as a proxy for smartphone use (higher battery usage = more smartphone use). Daily step counts were also passively collected. Logistic regression classified prodromal or symptomatic FTD vs. unimpaired as a function of: MoCA score [Model 1]; 7 passive features characterizing average, inter-day variability, and changes over time in smartphone use and movement [Model 2]; or passive smartphone features and MoCA [Model 3]. Analyses were repeated excluding participants with symptomatic FTD to detect prodromal FTD vs. unimpaired. The area under the curves (AUCs) for detecting prodromal or symptomatic FTD (vs. unimpaired) from the MoCA alone [Model 1] and passive smartphone features alone [Model 2] were 0.77 (95%CI: 0.70-0.85) and 0.77 (95%CI: 0.70-0.84), respectively. Their combination [Model 3] resulted in a significantly improved AUC of 0.86 (95%CI: 0.80-0.92) compared to Model 1 (p = 0.001). Significant Model 3 predictors included average daily battery usage (p = 0.02), slopes of change in step count (p = 0.04), and MoCA score (p
doi_str_mv 10.1002/alz.090571
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151203042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151203042</sourcerecordid><originalsourceid>FETCH-LOGICAL-p563-71b1d5b70f9ac362dce4894b606e434a8a72825838885701e61002661b7e4a8a3</originalsourceid><addsrcrecordid>eNpNTztPwzAYtBCIPmBhYUOMLCnfZ_uznRFFBSoVsXSP7MSRjJwHcTPAr6cVRWK6k-50D8ZuEFYIwB9t_F5BDqTxjM2RiGfEdX7-j8_YIqUPAAkG6ZLNRK4JpBZzdlvE0IXKxvs324XGp73dh75LV-yisTH56xMu2e55vStes-37y6Z42mYDKZFpdFiT09DkthKK15WXJpdOgfJSSGus5oaTEcYY0oBeHQcrhU77oyqW7OE3dhj7z-nQXrYhVT5G2_l-SqVAQg4CJD9Y707WybW-LocxtHb8Kv--iB8sw0dB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151203042</pqid></control><display><type>article</type><title>Clinical Manifestations</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Paolillo, Emily W ; Casaletto, Kaitlin B ; Taylor, Jack C ; Heuer, Hilary W ; Wise, Amy B ; Dhanam, Sreya ; Sanderson-Cimino, Mark E ; Palacios, Brandon R ; Young, J Clayton ; Bui, Mai Anh ; Saloner, Rowan ; Dutt, Shubir ; VandeBunte, Anna M ; Cadwallader, Claire J ; Kramer, Joel H ; Kremers, Walter K ; Forsberg, Leah K ; Boeve, Brad F ; Rosen, Howard J ; Boxer, Adam L ; Staffaroni, Adam M</creator><creatorcontrib>Paolillo, Emily W ; Casaletto, Kaitlin B ; Taylor, Jack C ; Heuer, Hilary W ; Wise, Amy B ; Dhanam, Sreya ; Sanderson-Cimino, Mark E ; Palacios, Brandon R ; Young, J Clayton ; Bui, Mai Anh ; Saloner, Rowan ; Dutt, Shubir ; VandeBunte, Anna M ; Cadwallader, Claire J ; Kramer, Joel H ; Kremers, Walter K ; Forsberg, Leah K ; Boeve, Brad F ; Rosen, Howard J ; Boxer, Adam L ; Staffaroni, Adam M ; ALLFTD Consortium</creatorcontrib><description>Frontotemporal dementia (FTD) is a common young-onset dementia. Challenges to in-person FTD evaluations (e.g., behavioral symptoms, disease rarity), highlight the need to develop remote, low-burden assessment techniques. A growing literature supports passive digital phenotyping for monitoring neurobehavioral change. Thus, we examined the utility of passively collected data from smartphones to detect prodromal or symptomatic FTD compared to that of the Montreal Cognitive Assessment (MoCA), a common cognitive screener. 199 adults enrolled in the ALLFTD Mobile App study (mean age = 53.4 [SD = 15.2]; 58% women) completed up to 6 months of passive smartphone monitoring via the ALLFTD Mobile App. 55% were unimpaired [CDR®+NACC FTLD = 0], 22% had prodromal FTD [CDR®+NACC FTLD = 0.5], and 23% had symptomatic FTD [CDR®+NACC FTLD≥1] with a variety of syndromic presentations. Battery percentage was collected frequently (median interval = 45 min), and total daily battery usage was calculated as a proxy for smartphone use (higher battery usage = more smartphone use). Daily step counts were also passively collected. Logistic regression classified prodromal or symptomatic FTD vs. unimpaired as a function of: MoCA score [Model 1]; 7 passive features characterizing average, inter-day variability, and changes over time in smartphone use and movement [Model 2]; or passive smartphone features and MoCA [Model 3]. Analyses were repeated excluding participants with symptomatic FTD to detect prodromal FTD vs. unimpaired. The area under the curves (AUCs) for detecting prodromal or symptomatic FTD (vs. unimpaired) from the MoCA alone [Model 1] and passive smartphone features alone [Model 2] were 0.77 (95%CI: 0.70-0.85) and 0.77 (95%CI: 0.70-0.84), respectively. Their combination [Model 3] resulted in a significantly improved AUC of 0.86 (95%CI: 0.80-0.92) compared to Model 1 (p = 0.001). Significant Model 3 predictors included average daily battery usage (p = 0.02), slopes of change in step count (p = 0.04), and MoCA score (p&lt;0.01). When distinguishing prodromal FTD from unimpaired, passive smartphone features alone (AUC = 0.75) were significantly better than the MoCA alone (AUC = 0.66; p&lt;0.01), and their combination had the largest AUC (0.80). Results support the utility of novel passively collected information from smartphones for detecting and monitoring FTD without contributing to assessment burden. With continued validation, passive digital monitoring methodologies have potential to increase access to dementia care.</description><identifier>ISSN: 1552-5279</identifier><identifier>EISSN: 1552-5279</identifier><identifier>DOI: 10.1002/alz.090571</identifier><identifier>PMID: 39750473</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Aged ; Female ; Frontotemporal Dementia - diagnosis ; Humans ; Male ; Mental Status and Dementia Tests - statistics &amp; numerical data ; Middle Aged ; Mobile Applications ; Neuropsychological Tests - statistics &amp; numerical data ; Prodromal Symptoms ; Smartphone</subject><ispartof>Alzheimer's &amp; dementia, 2024-12, Vol.20 Suppl 3, p.e090571</ispartof><rights>2024 The Alzheimer's Association. Alzheimer's &amp; Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39750473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paolillo, Emily W</creatorcontrib><creatorcontrib>Casaletto, Kaitlin B</creatorcontrib><creatorcontrib>Taylor, Jack C</creatorcontrib><creatorcontrib>Heuer, Hilary W</creatorcontrib><creatorcontrib>Wise, Amy B</creatorcontrib><creatorcontrib>Dhanam, Sreya</creatorcontrib><creatorcontrib>Sanderson-Cimino, Mark E</creatorcontrib><creatorcontrib>Palacios, Brandon R</creatorcontrib><creatorcontrib>Young, J Clayton</creatorcontrib><creatorcontrib>Bui, Mai Anh</creatorcontrib><creatorcontrib>Saloner, Rowan</creatorcontrib><creatorcontrib>Dutt, Shubir</creatorcontrib><creatorcontrib>VandeBunte, Anna M</creatorcontrib><creatorcontrib>Cadwallader, Claire J</creatorcontrib><creatorcontrib>Kramer, Joel H</creatorcontrib><creatorcontrib>Kremers, Walter K</creatorcontrib><creatorcontrib>Forsberg, Leah K</creatorcontrib><creatorcontrib>Boeve, Brad F</creatorcontrib><creatorcontrib>Rosen, Howard J</creatorcontrib><creatorcontrib>Boxer, Adam L</creatorcontrib><creatorcontrib>Staffaroni, Adam M</creatorcontrib><creatorcontrib>ALLFTD Consortium</creatorcontrib><title>Clinical Manifestations</title><title>Alzheimer's &amp; dementia</title><addtitle>Alzheimers Dement</addtitle><description>Frontotemporal dementia (FTD) is a common young-onset dementia. Challenges to in-person FTD evaluations (e.g., behavioral symptoms, disease rarity), highlight the need to develop remote, low-burden assessment techniques. A growing literature supports passive digital phenotyping for monitoring neurobehavioral change. Thus, we examined the utility of passively collected data from smartphones to detect prodromal or symptomatic FTD compared to that of the Montreal Cognitive Assessment (MoCA), a common cognitive screener. 199 adults enrolled in the ALLFTD Mobile App study (mean age = 53.4 [SD = 15.2]; 58% women) completed up to 6 months of passive smartphone monitoring via the ALLFTD Mobile App. 55% were unimpaired [CDR®+NACC FTLD = 0], 22% had prodromal FTD [CDR®+NACC FTLD = 0.5], and 23% had symptomatic FTD [CDR®+NACC FTLD≥1] with a variety of syndromic presentations. Battery percentage was collected frequently (median interval = 45 min), and total daily battery usage was calculated as a proxy for smartphone use (higher battery usage = more smartphone use). Daily step counts were also passively collected. Logistic regression classified prodromal or symptomatic FTD vs. unimpaired as a function of: MoCA score [Model 1]; 7 passive features characterizing average, inter-day variability, and changes over time in smartphone use and movement [Model 2]; or passive smartphone features and MoCA [Model 3]. Analyses were repeated excluding participants with symptomatic FTD to detect prodromal FTD vs. unimpaired. The area under the curves (AUCs) for detecting prodromal or symptomatic FTD (vs. unimpaired) from the MoCA alone [Model 1] and passive smartphone features alone [Model 2] were 0.77 (95%CI: 0.70-0.85) and 0.77 (95%CI: 0.70-0.84), respectively. Their combination [Model 3] resulted in a significantly improved AUC of 0.86 (95%CI: 0.80-0.92) compared to Model 1 (p = 0.001). Significant Model 3 predictors included average daily battery usage (p = 0.02), slopes of change in step count (p = 0.04), and MoCA score (p&lt;0.01). When distinguishing prodromal FTD from unimpaired, passive smartphone features alone (AUC = 0.75) were significantly better than the MoCA alone (AUC = 0.66; p&lt;0.01), and their combination had the largest AUC (0.80). Results support the utility of novel passively collected information from smartphones for detecting and monitoring FTD without contributing to assessment burden. With continued validation, passive digital monitoring methodologies have potential to increase access to dementia care.</description><subject>Adult</subject><subject>Aged</subject><subject>Female</subject><subject>Frontotemporal Dementia - diagnosis</subject><subject>Humans</subject><subject>Male</subject><subject>Mental Status and Dementia Tests - statistics &amp; numerical data</subject><subject>Middle Aged</subject><subject>Mobile Applications</subject><subject>Neuropsychological Tests - statistics &amp; numerical data</subject><subject>Prodromal Symptoms</subject><subject>Smartphone</subject><issn>1552-5279</issn><issn>1552-5279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNTztPwzAYtBCIPmBhYUOMLCnfZ_uznRFFBSoVsXSP7MSRjJwHcTPAr6cVRWK6k-50D8ZuEFYIwB9t_F5BDqTxjM2RiGfEdX7-j8_YIqUPAAkG6ZLNRK4JpBZzdlvE0IXKxvs324XGp73dh75LV-yisTH56xMu2e55vStes-37y6Z42mYDKZFpdFiT09DkthKK15WXJpdOgfJSSGus5oaTEcYY0oBeHQcrhU77oyqW7OE3dhj7z-nQXrYhVT5G2_l-SqVAQg4CJD9Y707WybW-LocxtHb8Kv--iB8sw0dB</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Paolillo, Emily W</creator><creator>Casaletto, Kaitlin B</creator><creator>Taylor, Jack C</creator><creator>Heuer, Hilary W</creator><creator>Wise, Amy B</creator><creator>Dhanam, Sreya</creator><creator>Sanderson-Cimino, Mark E</creator><creator>Palacios, Brandon R</creator><creator>Young, J Clayton</creator><creator>Bui, Mai Anh</creator><creator>Saloner, Rowan</creator><creator>Dutt, Shubir</creator><creator>VandeBunte, Anna M</creator><creator>Cadwallader, Claire J</creator><creator>Kramer, Joel H</creator><creator>Kremers, Walter K</creator><creator>Forsberg, Leah K</creator><creator>Boeve, Brad F</creator><creator>Rosen, Howard J</creator><creator>Boxer, Adam L</creator><creator>Staffaroni, Adam M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>Clinical Manifestations</title><author>Paolillo, Emily W ; Casaletto, Kaitlin B ; Taylor, Jack C ; Heuer, Hilary W ; Wise, Amy B ; Dhanam, Sreya ; Sanderson-Cimino, Mark E ; Palacios, Brandon R ; Young, J Clayton ; Bui, Mai Anh ; Saloner, Rowan ; Dutt, Shubir ; VandeBunte, Anna M ; Cadwallader, Claire J ; Kramer, Joel H ; Kremers, Walter K ; Forsberg, Leah K ; Boeve, Brad F ; Rosen, Howard J ; Boxer, Adam L ; Staffaroni, Adam M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p563-71b1d5b70f9ac362dce4894b606e434a8a72825838885701e61002661b7e4a8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Female</topic><topic>Frontotemporal Dementia - diagnosis</topic><topic>Humans</topic><topic>Male</topic><topic>Mental Status and Dementia Tests - statistics &amp; numerical data</topic><topic>Middle Aged</topic><topic>Mobile Applications</topic><topic>Neuropsychological Tests - statistics &amp; numerical data</topic><topic>Prodromal Symptoms</topic><topic>Smartphone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paolillo, Emily W</creatorcontrib><creatorcontrib>Casaletto, Kaitlin B</creatorcontrib><creatorcontrib>Taylor, Jack C</creatorcontrib><creatorcontrib>Heuer, Hilary W</creatorcontrib><creatorcontrib>Wise, Amy B</creatorcontrib><creatorcontrib>Dhanam, Sreya</creatorcontrib><creatorcontrib>Sanderson-Cimino, Mark E</creatorcontrib><creatorcontrib>Palacios, Brandon R</creatorcontrib><creatorcontrib>Young, J Clayton</creatorcontrib><creatorcontrib>Bui, Mai Anh</creatorcontrib><creatorcontrib>Saloner, Rowan</creatorcontrib><creatorcontrib>Dutt, Shubir</creatorcontrib><creatorcontrib>VandeBunte, Anna M</creatorcontrib><creatorcontrib>Cadwallader, Claire J</creatorcontrib><creatorcontrib>Kramer, Joel H</creatorcontrib><creatorcontrib>Kremers, Walter K</creatorcontrib><creatorcontrib>Forsberg, Leah K</creatorcontrib><creatorcontrib>Boeve, Brad F</creatorcontrib><creatorcontrib>Rosen, Howard J</creatorcontrib><creatorcontrib>Boxer, Adam L</creatorcontrib><creatorcontrib>Staffaroni, Adam M</creatorcontrib><creatorcontrib>ALLFTD Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Alzheimer's &amp; dementia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paolillo, Emily W</au><au>Casaletto, Kaitlin B</au><au>Taylor, Jack C</au><au>Heuer, Hilary W</au><au>Wise, Amy B</au><au>Dhanam, Sreya</au><au>Sanderson-Cimino, Mark E</au><au>Palacios, Brandon R</au><au>Young, J Clayton</au><au>Bui, Mai Anh</au><au>Saloner, Rowan</au><au>Dutt, Shubir</au><au>VandeBunte, Anna M</au><au>Cadwallader, Claire J</au><au>Kramer, Joel H</au><au>Kremers, Walter K</au><au>Forsberg, Leah K</au><au>Boeve, Brad F</au><au>Rosen, Howard J</au><au>Boxer, Adam L</au><au>Staffaroni, Adam M</au><aucorp>ALLFTD Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical Manifestations</atitle><jtitle>Alzheimer's &amp; dementia</jtitle><addtitle>Alzheimers Dement</addtitle><date>2024-12</date><risdate>2024</risdate><volume>20 Suppl 3</volume><spage>e090571</spage><pages>e090571-</pages><issn>1552-5279</issn><eissn>1552-5279</eissn><abstract>Frontotemporal dementia (FTD) is a common young-onset dementia. Challenges to in-person FTD evaluations (e.g., behavioral symptoms, disease rarity), highlight the need to develop remote, low-burden assessment techniques. A growing literature supports passive digital phenotyping for monitoring neurobehavioral change. Thus, we examined the utility of passively collected data from smartphones to detect prodromal or symptomatic FTD compared to that of the Montreal Cognitive Assessment (MoCA), a common cognitive screener. 199 adults enrolled in the ALLFTD Mobile App study (mean age = 53.4 [SD = 15.2]; 58% women) completed up to 6 months of passive smartphone monitoring via the ALLFTD Mobile App. 55% were unimpaired [CDR®+NACC FTLD = 0], 22% had prodromal FTD [CDR®+NACC FTLD = 0.5], and 23% had symptomatic FTD [CDR®+NACC FTLD≥1] with a variety of syndromic presentations. Battery percentage was collected frequently (median interval = 45 min), and total daily battery usage was calculated as a proxy for smartphone use (higher battery usage = more smartphone use). Daily step counts were also passively collected. Logistic regression classified prodromal or symptomatic FTD vs. unimpaired as a function of: MoCA score [Model 1]; 7 passive features characterizing average, inter-day variability, and changes over time in smartphone use and movement [Model 2]; or passive smartphone features and MoCA [Model 3]. Analyses were repeated excluding participants with symptomatic FTD to detect prodromal FTD vs. unimpaired. The area under the curves (AUCs) for detecting prodromal or symptomatic FTD (vs. unimpaired) from the MoCA alone [Model 1] and passive smartphone features alone [Model 2] were 0.77 (95%CI: 0.70-0.85) and 0.77 (95%CI: 0.70-0.84), respectively. Their combination [Model 3] resulted in a significantly improved AUC of 0.86 (95%CI: 0.80-0.92) compared to Model 1 (p = 0.001). Significant Model 3 predictors included average daily battery usage (p = 0.02), slopes of change in step count (p = 0.04), and MoCA score (p&lt;0.01). When distinguishing prodromal FTD from unimpaired, passive smartphone features alone (AUC = 0.75) were significantly better than the MoCA alone (AUC = 0.66; p&lt;0.01), and their combination had the largest AUC (0.80). Results support the utility of novel passively collected information from smartphones for detecting and monitoring FTD without contributing to assessment burden. With continued validation, passive digital monitoring methodologies have potential to increase access to dementia care.</abstract><cop>United States</cop><pmid>39750473</pmid><doi>10.1002/alz.090571</doi></addata></record>
fulltext fulltext
identifier ISSN: 1552-5279
ispartof Alzheimer's & dementia, 2024-12, Vol.20 Suppl 3, p.e090571
issn 1552-5279
1552-5279
language eng
recordid cdi_proquest_miscellaneous_3151203042
source MEDLINE; Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete; PubMed Central; PubMed Central Open Access
subjects Adult
Aged
Female
Frontotemporal Dementia - diagnosis
Humans
Male
Mental Status and Dementia Tests - statistics & numerical data
Middle Aged
Mobile Applications
Neuropsychological Tests - statistics & numerical data
Prodromal Symptoms
Smartphone
title Clinical Manifestations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20Manifestations&rft.jtitle=Alzheimer's%20&%20dementia&rft.au=Paolillo,%20Emily%20W&rft.aucorp=ALLFTD%20Consortium&rft.date=2024-12&rft.volume=20%20Suppl%203&rft.spage=e090571&rft.pages=e090571-&rft.issn=1552-5279&rft.eissn=1552-5279&rft_id=info:doi/10.1002/alz.090571&rft_dat=%3Cproquest_pubme%3E3151203042%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151203042&rft_id=info:pmid/39750473&rfr_iscdi=true