AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress
Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress....
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2025, Vol.27 (1), p.141-153 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 1 |
container_start_page | 141 |
container_title | Nature cell biology |
container_volume | 27 |
creator | Zhai, Xuewei Yang, Ronghui Chu, Qiaoyun Guo, Zihao Hou, Pengjiao Li, Xuexue Bai, Changsen Lu, Ziwen Qiao, Luxin Fu, Yanxia Niu, Jing Li, Binghui |
description | Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress. Aldolase B accounts for glycerol biosynthesis by forming a complex with glycerol 3-phosphate dehydrogenases GPD1 and GPD1L. Blocking GPD1, GPD1L or glycerol 3-phosphate phosphatase exacerbates reductive stress and suppresses cell proliferation under hypoxia and tumour growth in vivo. Overexpression of these enzymes increases glycerol excretion but still reduces cell viability under hypoxia and tumour proliferation due to energy stress. AMPK inactivates aldolase B to mitigate glycerol synthesis that dissipates ATP, alleviating NADH accumulation-induced energy crisis. Therefore, glycerol biosynthesis/excretion regulates the trade-off between reductive stress and energy stress. Moreover, this mode of regulation seems to be prevalent in reductive stress-driven transformations, enhancing our understanding of the metabolic complexity and guiding tumour treatment.
Zhai, Yang et al. report a central role for AMPK in regulating aldolase B-mediated glycerol synthesis and excretion under hypoxia as a mechanism to balance the trade-off between reductive and energy stress during tumour growth. |
doi_str_mv | 10.1038/s41556-024-01549-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151200377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151200377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-8b37268928a55b50e88f55ab4d0534b5c879b81d99d20ddd6768a834f08168c3</originalsourceid><addsrcrecordid>eNp9kTtPHTEQhS0UBAT4AxSRpTRpHOz1u0QIkiggKOgtrz17tWQfxPYml38fXy4QiYLCGkv-zpnxHIROGP3KKDenWTApFaGNIJRJYcl6Bx0woRURStsPm7uSRHPb7KOPOd9TyoSgeg_tc6uFltoeoO7s-vYnSbBaBl8g4tXwGCDNA4Z1SFD6ecKj76dST8YjFN_OQx9wSHPOxQ-_cAvlL8CEE8QllP4PYD9FDBOkVZUHnEuCnI_QbueHDMfP9RDdXV7cnX8nVzfffpyfXZHQSFWIablulLGN8VK2koIxnZS-FZFKLloZjLatYdHa2NAYo9LKeMNFRw1TJvBD9GVr-5Dm3wvk4sY-BxgGP8G8ZMeZZA2lXOuKfn6D3s9LmupwG0oazZTllWq21NOHE3TuIfWjT4-OUbcJwW1DcDUE9xSCW1fRp2frpR0hvkpetl4BvgVyfZpWkP73fsf2H4IAk2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155871693</pqid></control><display><type>article</type><title>AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress</title><source>MEDLINE</source><source>SpringerLink Journals (MCLS)</source><source>Nature</source><creator>Zhai, Xuewei ; Yang, Ronghui ; Chu, Qiaoyun ; Guo, Zihao ; Hou, Pengjiao ; Li, Xuexue ; Bai, Changsen ; Lu, Ziwen ; Qiao, Luxin ; Fu, Yanxia ; Niu, Jing ; Li, Binghui</creator><creatorcontrib>Zhai, Xuewei ; Yang, Ronghui ; Chu, Qiaoyun ; Guo, Zihao ; Hou, Pengjiao ; Li, Xuexue ; Bai, Changsen ; Lu, Ziwen ; Qiao, Luxin ; Fu, Yanxia ; Niu, Jing ; Li, Binghui</creatorcontrib><description>Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress. Aldolase B accounts for glycerol biosynthesis by forming a complex with glycerol 3-phosphate dehydrogenases GPD1 and GPD1L. Blocking GPD1, GPD1L or glycerol 3-phosphate phosphatase exacerbates reductive stress and suppresses cell proliferation under hypoxia and tumour growth in vivo. Overexpression of these enzymes increases glycerol excretion but still reduces cell viability under hypoxia and tumour proliferation due to energy stress. AMPK inactivates aldolase B to mitigate glycerol synthesis that dissipates ATP, alleviating NADH accumulation-induced energy crisis. Therefore, glycerol biosynthesis/excretion regulates the trade-off between reductive stress and energy stress. Moreover, this mode of regulation seems to be prevalent in reductive stress-driven transformations, enhancing our understanding of the metabolic complexity and guiding tumour treatment.
Zhai, Yang et al. report a central role for AMPK in regulating aldolase B-mediated glycerol synthesis and excretion under hypoxia as a mechanism to balance the trade-off between reductive and energy stress during tumour growth.</description><identifier>ISSN: 1465-7392</identifier><identifier>ISSN: 1476-4679</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-024-01549-x</identifier><identifier>PMID: 39747579</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/2 ; 13/95 ; 14/19 ; 631/67/2327 ; 631/80/83 ; 631/80/86/2366 ; 64/60 ; Accumulation ; Adenosine Triphosphate - metabolism ; Aldolase ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; Animals ; Biomedical and Life Sciences ; Biosynthesis ; Cancer Research ; Cell Biology ; Cell Hypoxia ; Cell Line, Tumor ; Cell Proliferation ; Cell viability ; Complexity ; Developmental Biology ; Energy ; Energy Metabolism ; Excretion ; Fructose-Bisphosphate Aldolase - genetics ; Fructose-Bisphosphate Aldolase - metabolism ; Glucose ; Glucose - metabolism ; Glycerol ; Glycerol - metabolism ; Glycerol-3-phosphate dehydrogenase ; Glycerol-3-Phosphate Dehydrogenase (NAD+) - genetics ; Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism ; Glycerolphosphate Dehydrogenase - genetics ; Glycerolphosphate Dehydrogenase - metabolism ; Humans ; Hypoxia ; Life Sciences ; Metabolism ; Mice ; Mice, Nude ; NAD - metabolism ; NADH ; Nicotinamide adenine dinucleotide ; Oxidation-Reduction ; Stem Cells ; Stress ; Stress, Physiological ; Tradeoffs ; Tumors</subject><ispartof>Nature cell biology, 2025, Vol.27 (1), p.141-153</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2025. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jan 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-8b37268928a55b50e88f55ab4d0534b5c879b81d99d20ddd6768a834f08168c3</cites><orcidid>0000-0002-0744-1533 ; 0000-0002-5645-4373 ; 0000-0002-6110-8010 ; 0000-0002-9765-9666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-024-01549-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-024-01549-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39747579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Xuewei</creatorcontrib><creatorcontrib>Yang, Ronghui</creatorcontrib><creatorcontrib>Chu, Qiaoyun</creatorcontrib><creatorcontrib>Guo, Zihao</creatorcontrib><creatorcontrib>Hou, Pengjiao</creatorcontrib><creatorcontrib>Li, Xuexue</creatorcontrib><creatorcontrib>Bai, Changsen</creatorcontrib><creatorcontrib>Lu, Ziwen</creatorcontrib><creatorcontrib>Qiao, Luxin</creatorcontrib><creatorcontrib>Fu, Yanxia</creatorcontrib><creatorcontrib>Niu, Jing</creatorcontrib><creatorcontrib>Li, Binghui</creatorcontrib><title>AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress. Aldolase B accounts for glycerol biosynthesis by forming a complex with glycerol 3-phosphate dehydrogenases GPD1 and GPD1L. Blocking GPD1, GPD1L or glycerol 3-phosphate phosphatase exacerbates reductive stress and suppresses cell proliferation under hypoxia and tumour growth in vivo. Overexpression of these enzymes increases glycerol excretion but still reduces cell viability under hypoxia and tumour proliferation due to energy stress. AMPK inactivates aldolase B to mitigate glycerol synthesis that dissipates ATP, alleviating NADH accumulation-induced energy crisis. Therefore, glycerol biosynthesis/excretion regulates the trade-off between reductive stress and energy stress. Moreover, this mode of regulation seems to be prevalent in reductive stress-driven transformations, enhancing our understanding of the metabolic complexity and guiding tumour treatment.
Zhai, Yang et al. report a central role for AMPK in regulating aldolase B-mediated glycerol synthesis and excretion under hypoxia as a mechanism to balance the trade-off between reductive and energy stress during tumour growth.</description><subject>13/1</subject><subject>13/2</subject><subject>13/95</subject><subject>14/19</subject><subject>631/67/2327</subject><subject>631/80/83</subject><subject>631/80/86/2366</subject><subject>64/60</subject><subject>Accumulation</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Aldolase</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Hypoxia</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell viability</subject><subject>Complexity</subject><subject>Developmental Biology</subject><subject>Energy</subject><subject>Energy Metabolism</subject><subject>Excretion</subject><subject>Fructose-Bisphosphate Aldolase - genetics</subject><subject>Fructose-Bisphosphate Aldolase - metabolism</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glycerol</subject><subject>Glycerol - metabolism</subject><subject>Glycerol-3-phosphate dehydrogenase</subject><subject>Glycerol-3-Phosphate Dehydrogenase (NAD+) - genetics</subject><subject>Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism</subject><subject>Glycerolphosphate Dehydrogenase - genetics</subject><subject>Glycerolphosphate Dehydrogenase - metabolism</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxidation-Reduction</subject><subject>Stem Cells</subject><subject>Stress</subject><subject>Stress, Physiological</subject><subject>Tradeoffs</subject><subject>Tumors</subject><issn>1465-7392</issn><issn>1476-4679</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kTtPHTEQhS0UBAT4AxSRpTRpHOz1u0QIkiggKOgtrz17tWQfxPYml38fXy4QiYLCGkv-zpnxHIROGP3KKDenWTApFaGNIJRJYcl6Bx0woRURStsPm7uSRHPb7KOPOd9TyoSgeg_tc6uFltoeoO7s-vYnSbBaBl8g4tXwGCDNA4Z1SFD6ecKj76dST8YjFN_OQx9wSHPOxQ-_cAvlL8CEE8QllP4PYD9FDBOkVZUHnEuCnI_QbueHDMfP9RDdXV7cnX8nVzfffpyfXZHQSFWIablulLGN8VK2koIxnZS-FZFKLloZjLatYdHa2NAYo9LKeMNFRw1TJvBD9GVr-5Dm3wvk4sY-BxgGP8G8ZMeZZA2lXOuKfn6D3s9LmupwG0oazZTllWq21NOHE3TuIfWjT4-OUbcJwW1DcDUE9xSCW1fRp2frpR0hvkpetl4BvgVyfZpWkP73fsf2H4IAk2c</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhai, Xuewei</creator><creator>Yang, Ronghui</creator><creator>Chu, Qiaoyun</creator><creator>Guo, Zihao</creator><creator>Hou, Pengjiao</creator><creator>Li, Xuexue</creator><creator>Bai, Changsen</creator><creator>Lu, Ziwen</creator><creator>Qiao, Luxin</creator><creator>Fu, Yanxia</creator><creator>Niu, Jing</creator><creator>Li, Binghui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0744-1533</orcidid><orcidid>https://orcid.org/0000-0002-5645-4373</orcidid><orcidid>https://orcid.org/0000-0002-6110-8010</orcidid><orcidid>https://orcid.org/0000-0002-9765-9666</orcidid></search><sort><creationdate>2025</creationdate><title>AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress</title><author>Zhai, Xuewei ; Yang, Ronghui ; Chu, Qiaoyun ; Guo, Zihao ; Hou, Pengjiao ; Li, Xuexue ; Bai, Changsen ; Lu, Ziwen ; Qiao, Luxin ; Fu, Yanxia ; Niu, Jing ; Li, Binghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-8b37268928a55b50e88f55ab4d0534b5c879b81d99d20ddd6768a834f08168c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>13/1</topic><topic>13/2</topic><topic>13/95</topic><topic>14/19</topic><topic>631/67/2327</topic><topic>631/80/83</topic><topic>631/80/86/2366</topic><topic>64/60</topic><topic>Accumulation</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Aldolase</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Hypoxia</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell viability</topic><topic>Complexity</topic><topic>Developmental Biology</topic><topic>Energy</topic><topic>Energy Metabolism</topic><topic>Excretion</topic><topic>Fructose-Bisphosphate Aldolase - genetics</topic><topic>Fructose-Bisphosphate Aldolase - metabolism</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glycerol</topic><topic>Glycerol - metabolism</topic><topic>Glycerol-3-phosphate dehydrogenase</topic><topic>Glycerol-3-Phosphate Dehydrogenase (NAD+) - genetics</topic><topic>Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism</topic><topic>Glycerolphosphate Dehydrogenase - genetics</topic><topic>Glycerolphosphate Dehydrogenase - metabolism</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxidation-Reduction</topic><topic>Stem Cells</topic><topic>Stress</topic><topic>Stress, Physiological</topic><topic>Tradeoffs</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Xuewei</creatorcontrib><creatorcontrib>Yang, Ronghui</creatorcontrib><creatorcontrib>Chu, Qiaoyun</creatorcontrib><creatorcontrib>Guo, Zihao</creatorcontrib><creatorcontrib>Hou, Pengjiao</creatorcontrib><creatorcontrib>Li, Xuexue</creatorcontrib><creatorcontrib>Bai, Changsen</creatorcontrib><creatorcontrib>Lu, Ziwen</creatorcontrib><creatorcontrib>Qiao, Luxin</creatorcontrib><creatorcontrib>Fu, Yanxia</creatorcontrib><creatorcontrib>Niu, Jing</creatorcontrib><creatorcontrib>Li, Binghui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Xuewei</au><au>Yang, Ronghui</au><au>Chu, Qiaoyun</au><au>Guo, Zihao</au><au>Hou, Pengjiao</au><au>Li, Xuexue</au><au>Bai, Changsen</au><au>Lu, Ziwen</au><au>Qiao, Luxin</au><au>Fu, Yanxia</au><au>Niu, Jing</au><au>Li, Binghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2025</date><risdate>2025</risdate><volume>27</volume><issue>1</issue><spage>141</spage><epage>153</epage><pages>141-153</pages><issn>1465-7392</issn><issn>1476-4679</issn><eissn>1476-4679</eissn><abstract>Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress. Aldolase B accounts for glycerol biosynthesis by forming a complex with glycerol 3-phosphate dehydrogenases GPD1 and GPD1L. Blocking GPD1, GPD1L or glycerol 3-phosphate phosphatase exacerbates reductive stress and suppresses cell proliferation under hypoxia and tumour growth in vivo. Overexpression of these enzymes increases glycerol excretion but still reduces cell viability under hypoxia and tumour proliferation due to energy stress. AMPK inactivates aldolase B to mitigate glycerol synthesis that dissipates ATP, alleviating NADH accumulation-induced energy crisis. Therefore, glycerol biosynthesis/excretion regulates the trade-off between reductive stress and energy stress. Moreover, this mode of regulation seems to be prevalent in reductive stress-driven transformations, enhancing our understanding of the metabolic complexity and guiding tumour treatment.
Zhai, Yang et al. report a central role for AMPK in regulating aldolase B-mediated glycerol synthesis and excretion under hypoxia as a mechanism to balance the trade-off between reductive and energy stress during tumour growth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39747579</pmid><doi>10.1038/s41556-024-01549-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0744-1533</orcidid><orcidid>https://orcid.org/0000-0002-5645-4373</orcidid><orcidid>https://orcid.org/0000-0002-6110-8010</orcidid><orcidid>https://orcid.org/0000-0002-9765-9666</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2025, Vol.27 (1), p.141-153 |
issn | 1465-7392 1476-4679 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_3151200377 |
source | MEDLINE; SpringerLink Journals (MCLS); Nature |
subjects | 13/1 13/2 13/95 14/19 631/67/2327 631/80/83 631/80/86/2366 64/60 Accumulation Adenosine Triphosphate - metabolism Aldolase AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism Animals Biomedical and Life Sciences Biosynthesis Cancer Research Cell Biology Cell Hypoxia Cell Line, Tumor Cell Proliferation Cell viability Complexity Developmental Biology Energy Energy Metabolism Excretion Fructose-Bisphosphate Aldolase - genetics Fructose-Bisphosphate Aldolase - metabolism Glucose Glucose - metabolism Glycerol Glycerol - metabolism Glycerol-3-phosphate dehydrogenase Glycerol-3-Phosphate Dehydrogenase (NAD+) - genetics Glycerol-3-Phosphate Dehydrogenase (NAD+) - metabolism Glycerolphosphate Dehydrogenase - genetics Glycerolphosphate Dehydrogenase - metabolism Humans Hypoxia Life Sciences Metabolism Mice Mice, Nude NAD - metabolism NADH Nicotinamide adenine dinucleotide Oxidation-Reduction Stem Cells Stress Stress, Physiological Tradeoffs Tumors |
title | AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMPK-regulated%20glycerol%20excretion%20maintains%20metabolic%20crosstalk%20between%20reductive%20and%20energetic%20stress&rft.jtitle=Nature%20cell%20biology&rft.au=Zhai,%20Xuewei&rft.date=2025&rft.volume=27&rft.issue=1&rft.spage=141&rft.epage=153&rft.pages=141-153&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-024-01549-x&rft_dat=%3Cproquest_cross%3E3151200377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155871693&rft_id=info:pmid/39747579&rfr_iscdi=true |