International multicenter validation of AI-driven ultrasound detection of ovarian cancer
Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, ex...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2025-01, Vol.31 (1), p.189-196 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 1 |
container_start_page | 189 |
container_title | Nature medicine |
container_volume | 31 |
creator | Christiansen, Filip Konuk, Emir Ganeshan, Adithya Raju Welch, Robert Palés Huix, Joana Czekierdowski, Artur Leone, Francesco Paolo Giuseppe Haak, Lucia Anna Fruscio, Robert Gaurilcikas, Adrius Franchi, Dorella Fischerova, Daniela Mor, Elisa Savelli, Luca Pascual, Maria Àngela Kudla, Marek Jerzy Guerriero, Stefano Buonomo, Francesca Liuba, Karina Montik, Nina Alcázar, Juan Luis Domali, Ekaterini Pangilinan, Nelinda Catherine P. Carella, Chiara Munaretto, Maria Saskova, Petra Verri, Debora Visenzi, Chiara Herman, Pawel Smith, Kevin Epstein, Elisabeth |
description | Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen’s kappa, Matthew’s correlation coefficient, diagnostic odds ratio and Youden’s J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes.
In a comprehensive dataset from 3,652 patients across 20 centers in eight countries, an ultrasound-based AI model shows robust performance across centers, ultrasound systems, 58 histological diagnoses and patient age groups and reduced referral to experts by 63% in a retrospective triage simulation. |
doi_str_mv | 10.1038/s41591-024-03329-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151200205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151200205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-4ca78ec0cd2ee94fcb2dd1a3956b0ea3c2c9ad110c2e2f656e33305a2624e44b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMo1q8_4EEWvHiJTj520z0W8aNQ8KLQW0iTWdmyzdZkt-C_N3ZbBQ-eEjLPvJN5CLlkcMtAjO-iZHnJKHBJQQheUnlATlguC8oUzA_THdSYjsu8GJHTGJcAICAvj8lIlEqqQpUnZD71HQZvurr1pslWfdPVFr_fso1parctZG2VTabUhXqDPktIMLHtvcscdmj3RLsxoTY-s8ZbDOfkqDJNxIvdeUbeHh9e75_p7OVpej-ZUSsAOiqtUWO0YB1HLGVlF9w5ZkT69ALQCMttaRxjYDnyqsgLFCItYXjBJUq5EGfkZshdh_ajx9jpVR0tNo3x2PZRC5YzDsAhT-j1H3TZ9mn3ZkspVQDnKlF8oGxoYwxY6XWoVyZ8agb627sevOvkXW-9a5marnbR_WKF7qdlLzoBYgBiKvl3DL-z_4n9AmbNjrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3157760227</pqid></control><display><type>article</type><title>International multicenter validation of AI-driven ultrasound detection of ovarian cancer</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Christiansen, Filip ; Konuk, Emir ; Ganeshan, Adithya Raju ; Welch, Robert ; Palés Huix, Joana ; Czekierdowski, Artur ; Leone, Francesco Paolo Giuseppe ; Haak, Lucia Anna ; Fruscio, Robert ; Gaurilcikas, Adrius ; Franchi, Dorella ; Fischerova, Daniela ; Mor, Elisa ; Savelli, Luca ; Pascual, Maria Àngela ; Kudla, Marek Jerzy ; Guerriero, Stefano ; Buonomo, Francesca ; Liuba, Karina ; Montik, Nina ; Alcázar, Juan Luis ; Domali, Ekaterini ; Pangilinan, Nelinda Catherine P. ; Carella, Chiara ; Munaretto, Maria ; Saskova, Petra ; Verri, Debora ; Visenzi, Chiara ; Herman, Pawel ; Smith, Kevin ; Epstein, Elisabeth</creator><creatorcontrib>Christiansen, Filip ; Konuk, Emir ; Ganeshan, Adithya Raju ; Welch, Robert ; Palés Huix, Joana ; Czekierdowski, Artur ; Leone, Francesco Paolo Giuseppe ; Haak, Lucia Anna ; Fruscio, Robert ; Gaurilcikas, Adrius ; Franchi, Dorella ; Fischerova, Daniela ; Mor, Elisa ; Savelli, Luca ; Pascual, Maria Àngela ; Kudla, Marek Jerzy ; Guerriero, Stefano ; Buonomo, Francesca ; Liuba, Karina ; Montik, Nina ; Alcázar, Juan Luis ; Domali, Ekaterini ; Pangilinan, Nelinda Catherine P. ; Carella, Chiara ; Munaretto, Maria ; Saskova, Petra ; Verri, Debora ; Visenzi, Chiara ; Herman, Pawel ; Smith, Kevin ; Epstein, Elisabeth</creatorcontrib><description>Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen’s kappa, Matthew’s correlation coefficient, diagnostic odds ratio and Youden’s J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes.
In a comprehensive dataset from 3,652 patients across 20 centers in eight countries, an ultrasound-based AI model shows robust performance across centers, ultrasound systems, 58 histological diagnoses and patient age groups and reduced referral to experts by 63% in a retrospective triage simulation.</description><identifier>ISSN: 1078-8956</identifier><identifier>ISSN: 1546-170X</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-024-03329-4</identifier><identifier>PMID: 39747679</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 631/67/1517/1709 ; 631/67/2321 ; 692/700/139 ; 692/700/1421/1860 ; Accuracy ; Age groups ; Artificial intelligence ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer Research ; Correlation coefficient ; Correlation coefficients ; Datasets ; Deep learning ; Diagnostic systems ; Infectious Diseases ; Machine learning ; Medical imaging ; Metabolic Diseases ; Molecular Medicine ; Neural networks ; Neurosciences ; Ovarian cancer ; Robustness ; Sensitivity analysis ; Shortages ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Nature medicine, 2025-01, Vol.31 (1), p.189-196</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Nature Publishing Group Jan 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-4ca78ec0cd2ee94fcb2dd1a3956b0ea3c2c9ad110c2e2f656e33305a2624e44b3</cites><orcidid>0000-0001-5688-2194 ; 0000-0001-7206-9611 ; 0000-0002-5367-8056 ; 0000-0003-2298-7785 ; 0009-0008-4117-1638 ; 0000-0001-8899-3040 ; 0000-0001-9437-4553 ; 0009-0006-2690-5686 ; 0000-0003-1819-6120 ; 0000-0001-5749-7968 ; 0000-0002-3950-5538 ; 0000-0002-6587-2622 ; 0000-0002-7224-3218 ; 0000-0001-8216-6458 ; 0000-0001-5095-6981 ; 0000-0002-7406-8804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-024-03329-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-024-03329-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39747679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christiansen, Filip</creatorcontrib><creatorcontrib>Konuk, Emir</creatorcontrib><creatorcontrib>Ganeshan, Adithya Raju</creatorcontrib><creatorcontrib>Welch, Robert</creatorcontrib><creatorcontrib>Palés Huix, Joana</creatorcontrib><creatorcontrib>Czekierdowski, Artur</creatorcontrib><creatorcontrib>Leone, Francesco Paolo Giuseppe</creatorcontrib><creatorcontrib>Haak, Lucia Anna</creatorcontrib><creatorcontrib>Fruscio, Robert</creatorcontrib><creatorcontrib>Gaurilcikas, Adrius</creatorcontrib><creatorcontrib>Franchi, Dorella</creatorcontrib><creatorcontrib>Fischerova, Daniela</creatorcontrib><creatorcontrib>Mor, Elisa</creatorcontrib><creatorcontrib>Savelli, Luca</creatorcontrib><creatorcontrib>Pascual, Maria Àngela</creatorcontrib><creatorcontrib>Kudla, Marek Jerzy</creatorcontrib><creatorcontrib>Guerriero, Stefano</creatorcontrib><creatorcontrib>Buonomo, Francesca</creatorcontrib><creatorcontrib>Liuba, Karina</creatorcontrib><creatorcontrib>Montik, Nina</creatorcontrib><creatorcontrib>Alcázar, Juan Luis</creatorcontrib><creatorcontrib>Domali, Ekaterini</creatorcontrib><creatorcontrib>Pangilinan, Nelinda Catherine P.</creatorcontrib><creatorcontrib>Carella, Chiara</creatorcontrib><creatorcontrib>Munaretto, Maria</creatorcontrib><creatorcontrib>Saskova, Petra</creatorcontrib><creatorcontrib>Verri, Debora</creatorcontrib><creatorcontrib>Visenzi, Chiara</creatorcontrib><creatorcontrib>Herman, Pawel</creatorcontrib><creatorcontrib>Smith, Kevin</creatorcontrib><creatorcontrib>Epstein, Elisabeth</creatorcontrib><title>International multicenter validation of AI-driven ultrasound detection of ovarian cancer</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen’s kappa, Matthew’s correlation coefficient, diagnostic odds ratio and Youden’s J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes.
In a comprehensive dataset from 3,652 patients across 20 centers in eight countries, an ultrasound-based AI model shows robust performance across centers, ultrasound systems, 58 histological diagnoses and patient age groups and reduced referral to experts by 63% in a retrospective triage simulation.</description><subject>631/114/1305</subject><subject>631/67/1517/1709</subject><subject>631/67/2321</subject><subject>692/700/139</subject><subject>692/700/1421/1860</subject><subject>Accuracy</subject><subject>Age groups</subject><subject>Artificial intelligence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnostic systems</subject><subject>Infectious Diseases</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Ovarian cancer</subject><subject>Robustness</subject><subject>Sensitivity analysis</subject><subject>Shortages</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>1078-8956</issn><issn>1546-170X</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMo1q8_4EEWvHiJTj520z0W8aNQ8KLQW0iTWdmyzdZkt-C_N3ZbBQ-eEjLPvJN5CLlkcMtAjO-iZHnJKHBJQQheUnlATlguC8oUzA_THdSYjsu8GJHTGJcAICAvj8lIlEqqQpUnZD71HQZvurr1pslWfdPVFr_fso1parctZG2VTabUhXqDPktIMLHtvcscdmj3RLsxoTY-s8ZbDOfkqDJNxIvdeUbeHh9e75_p7OVpej-ZUSsAOiqtUWO0YB1HLGVlF9w5ZkT69ALQCMttaRxjYDnyqsgLFCItYXjBJUq5EGfkZshdh_ajx9jpVR0tNo3x2PZRC5YzDsAhT-j1H3TZ9mn3ZkspVQDnKlF8oGxoYwxY6XWoVyZ8agb627sevOvkXW-9a5marnbR_WKF7qdlLzoBYgBiKvl3DL-z_4n9AmbNjrk</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Christiansen, Filip</creator><creator>Konuk, Emir</creator><creator>Ganeshan, Adithya Raju</creator><creator>Welch, Robert</creator><creator>Palés Huix, Joana</creator><creator>Czekierdowski, Artur</creator><creator>Leone, Francesco Paolo Giuseppe</creator><creator>Haak, Lucia Anna</creator><creator>Fruscio, Robert</creator><creator>Gaurilcikas, Adrius</creator><creator>Franchi, Dorella</creator><creator>Fischerova, Daniela</creator><creator>Mor, Elisa</creator><creator>Savelli, Luca</creator><creator>Pascual, Maria Àngela</creator><creator>Kudla, Marek Jerzy</creator><creator>Guerriero, Stefano</creator><creator>Buonomo, Francesca</creator><creator>Liuba, Karina</creator><creator>Montik, Nina</creator><creator>Alcázar, Juan Luis</creator><creator>Domali, Ekaterini</creator><creator>Pangilinan, Nelinda Catherine P.</creator><creator>Carella, Chiara</creator><creator>Munaretto, Maria</creator><creator>Saskova, Petra</creator><creator>Verri, Debora</creator><creator>Visenzi, Chiara</creator><creator>Herman, Pawel</creator><creator>Smith, Kevin</creator><creator>Epstein, Elisabeth</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5688-2194</orcidid><orcidid>https://orcid.org/0000-0001-7206-9611</orcidid><orcidid>https://orcid.org/0000-0002-5367-8056</orcidid><orcidid>https://orcid.org/0000-0003-2298-7785</orcidid><orcidid>https://orcid.org/0009-0008-4117-1638</orcidid><orcidid>https://orcid.org/0000-0001-8899-3040</orcidid><orcidid>https://orcid.org/0000-0001-9437-4553</orcidid><orcidid>https://orcid.org/0009-0006-2690-5686</orcidid><orcidid>https://orcid.org/0000-0003-1819-6120</orcidid><orcidid>https://orcid.org/0000-0001-5749-7968</orcidid><orcidid>https://orcid.org/0000-0002-3950-5538</orcidid><orcidid>https://orcid.org/0000-0002-6587-2622</orcidid><orcidid>https://orcid.org/0000-0002-7224-3218</orcidid><orcidid>https://orcid.org/0000-0001-8216-6458</orcidid><orcidid>https://orcid.org/0000-0001-5095-6981</orcidid><orcidid>https://orcid.org/0000-0002-7406-8804</orcidid></search><sort><creationdate>20250102</creationdate><title>International multicenter validation of AI-driven ultrasound detection of ovarian cancer</title><author>Christiansen, Filip ; Konuk, Emir ; Ganeshan, Adithya Raju ; Welch, Robert ; Palés Huix, Joana ; Czekierdowski, Artur ; Leone, Francesco Paolo Giuseppe ; Haak, Lucia Anna ; Fruscio, Robert ; Gaurilcikas, Adrius ; Franchi, Dorella ; Fischerova, Daniela ; Mor, Elisa ; Savelli, Luca ; Pascual, Maria Àngela ; Kudla, Marek Jerzy ; Guerriero, Stefano ; Buonomo, Francesca ; Liuba, Karina ; Montik, Nina ; Alcázar, Juan Luis ; Domali, Ekaterini ; Pangilinan, Nelinda Catherine P. ; Carella, Chiara ; Munaretto, Maria ; Saskova, Petra ; Verri, Debora ; Visenzi, Chiara ; Herman, Pawel ; Smith, Kevin ; Epstein, Elisabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-4ca78ec0cd2ee94fcb2dd1a3956b0ea3c2c9ad110c2e2f656e33305a2624e44b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>631/114/1305</topic><topic>631/67/1517/1709</topic><topic>631/67/2321</topic><topic>692/700/139</topic><topic>692/700/1421/1860</topic><topic>Accuracy</topic><topic>Age groups</topic><topic>Artificial intelligence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnostic systems</topic><topic>Infectious Diseases</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Ovarian cancer</topic><topic>Robustness</topic><topic>Sensitivity analysis</topic><topic>Shortages</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christiansen, Filip</creatorcontrib><creatorcontrib>Konuk, Emir</creatorcontrib><creatorcontrib>Ganeshan, Adithya Raju</creatorcontrib><creatorcontrib>Welch, Robert</creatorcontrib><creatorcontrib>Palés Huix, Joana</creatorcontrib><creatorcontrib>Czekierdowski, Artur</creatorcontrib><creatorcontrib>Leone, Francesco Paolo Giuseppe</creatorcontrib><creatorcontrib>Haak, Lucia Anna</creatorcontrib><creatorcontrib>Fruscio, Robert</creatorcontrib><creatorcontrib>Gaurilcikas, Adrius</creatorcontrib><creatorcontrib>Franchi, Dorella</creatorcontrib><creatorcontrib>Fischerova, Daniela</creatorcontrib><creatorcontrib>Mor, Elisa</creatorcontrib><creatorcontrib>Savelli, Luca</creatorcontrib><creatorcontrib>Pascual, Maria Àngela</creatorcontrib><creatorcontrib>Kudla, Marek Jerzy</creatorcontrib><creatorcontrib>Guerriero, Stefano</creatorcontrib><creatorcontrib>Buonomo, Francesca</creatorcontrib><creatorcontrib>Liuba, Karina</creatorcontrib><creatorcontrib>Montik, Nina</creatorcontrib><creatorcontrib>Alcázar, Juan Luis</creatorcontrib><creatorcontrib>Domali, Ekaterini</creatorcontrib><creatorcontrib>Pangilinan, Nelinda Catherine P.</creatorcontrib><creatorcontrib>Carella, Chiara</creatorcontrib><creatorcontrib>Munaretto, Maria</creatorcontrib><creatorcontrib>Saskova, Petra</creatorcontrib><creatorcontrib>Verri, Debora</creatorcontrib><creatorcontrib>Visenzi, Chiara</creatorcontrib><creatorcontrib>Herman, Pawel</creatorcontrib><creatorcontrib>Smith, Kevin</creatorcontrib><creatorcontrib>Epstein, Elisabeth</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christiansen, Filip</au><au>Konuk, Emir</au><au>Ganeshan, Adithya Raju</au><au>Welch, Robert</au><au>Palés Huix, Joana</au><au>Czekierdowski, Artur</au><au>Leone, Francesco Paolo Giuseppe</au><au>Haak, Lucia Anna</au><au>Fruscio, Robert</au><au>Gaurilcikas, Adrius</au><au>Franchi, Dorella</au><au>Fischerova, Daniela</au><au>Mor, Elisa</au><au>Savelli, Luca</au><au>Pascual, Maria Àngela</au><au>Kudla, Marek Jerzy</au><au>Guerriero, Stefano</au><au>Buonomo, Francesca</au><au>Liuba, Karina</au><au>Montik, Nina</au><au>Alcázar, Juan Luis</au><au>Domali, Ekaterini</au><au>Pangilinan, Nelinda Catherine P.</au><au>Carella, Chiara</au><au>Munaretto, Maria</au><au>Saskova, Petra</au><au>Verri, Debora</au><au>Visenzi, Chiara</au><au>Herman, Pawel</au><au>Smith, Kevin</au><au>Epstein, Elisabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>International multicenter validation of AI-driven ultrasound detection of ovarian cancer</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2025-01-02</date><risdate>2025</risdate><volume>31</volume><issue>1</issue><spage>189</spage><epage>196</epage><pages>189-196</pages><issn>1078-8956</issn><issn>1546-170X</issn><eissn>1546-170X</eissn><abstract>Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen’s kappa, Matthew’s correlation coefficient, diagnostic odds ratio and Youden’s J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes.
In a comprehensive dataset from 3,652 patients across 20 centers in eight countries, an ultrasound-based AI model shows robust performance across centers, ultrasound systems, 58 histological diagnoses and patient age groups and reduced referral to experts by 63% in a retrospective triage simulation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>39747679</pmid><doi>10.1038/s41591-024-03329-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5688-2194</orcidid><orcidid>https://orcid.org/0000-0001-7206-9611</orcidid><orcidid>https://orcid.org/0000-0002-5367-8056</orcidid><orcidid>https://orcid.org/0000-0003-2298-7785</orcidid><orcidid>https://orcid.org/0009-0008-4117-1638</orcidid><orcidid>https://orcid.org/0000-0001-8899-3040</orcidid><orcidid>https://orcid.org/0000-0001-9437-4553</orcidid><orcidid>https://orcid.org/0009-0006-2690-5686</orcidid><orcidid>https://orcid.org/0000-0003-1819-6120</orcidid><orcidid>https://orcid.org/0000-0001-5749-7968</orcidid><orcidid>https://orcid.org/0000-0002-3950-5538</orcidid><orcidid>https://orcid.org/0000-0002-6587-2622</orcidid><orcidid>https://orcid.org/0000-0002-7224-3218</orcidid><orcidid>https://orcid.org/0000-0001-8216-6458</orcidid><orcidid>https://orcid.org/0000-0001-5095-6981</orcidid><orcidid>https://orcid.org/0000-0002-7406-8804</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2025-01, Vol.31 (1), p.189-196 |
issn | 1078-8956 1546-170X 1546-170X |
language | eng |
recordid | cdi_proquest_miscellaneous_3151200205 |
source | Nature; Springer Nature - Complete Springer Journals |
subjects | 631/114/1305 631/67/1517/1709 631/67/2321 692/700/139 692/700/1421/1860 Accuracy Age groups Artificial intelligence Biomedical and Life Sciences Biomedicine Cancer Cancer Research Correlation coefficient Correlation coefficients Datasets Deep learning Diagnostic systems Infectious Diseases Machine learning Medical imaging Metabolic Diseases Molecular Medicine Neural networks Neurosciences Ovarian cancer Robustness Sensitivity analysis Shortages Ultrasonic imaging Ultrasound |
title | International multicenter validation of AI-driven ultrasound detection of ovarian cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=International%20multicenter%20validation%20of%20AI-driven%20ultrasound%20detection%20of%20ovarian%20cancer&rft.jtitle=Nature%20medicine&rft.au=Christiansen,%20Filip&rft.date=2025-01-02&rft.volume=31&rft.issue=1&rft.spage=189&rft.epage=196&rft.pages=189-196&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-024-03329-4&rft_dat=%3Cproquest_cross%3E3151200205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3157760227&rft_id=info:pmid/39747679&rfr_iscdi=true |