International multicenter validation of AI-driven ultrasound detection of ovarian cancer

Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2025-01, Vol.31 (1), p.189-196
Hauptverfasser: Christiansen, Filip, Konuk, Emir, Ganeshan, Adithya Raju, Welch, Robert, Palés Huix, Joana, Czekierdowski, Artur, Leone, Francesco Paolo Giuseppe, Haak, Lucia Anna, Fruscio, Robert, Gaurilcikas, Adrius, Franchi, Dorella, Fischerova, Daniela, Mor, Elisa, Savelli, Luca, Pascual, Maria Àngela, Kudla, Marek Jerzy, Guerriero, Stefano, Buonomo, Francesca, Liuba, Karina, Montik, Nina, Alcázar, Juan Luis, Domali, Ekaterini, Pangilinan, Nelinda Catherine P., Carella, Chiara, Munaretto, Maria, Saskova, Petra, Verri, Debora, Visenzi, Chiara, Herman, Pawel, Smith, Kevin, Epstein, Elisabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 1
container_start_page 189
container_title Nature medicine
container_volume 31
creator Christiansen, Filip
Konuk, Emir
Ganeshan, Adithya Raju
Welch, Robert
Palés Huix, Joana
Czekierdowski, Artur
Leone, Francesco Paolo Giuseppe
Haak, Lucia Anna
Fruscio, Robert
Gaurilcikas, Adrius
Franchi, Dorella
Fischerova, Daniela
Mor, Elisa
Savelli, Luca
Pascual, Maria Àngela
Kudla, Marek Jerzy
Guerriero, Stefano
Buonomo, Francesca
Liuba, Karina
Montik, Nina
Alcázar, Juan Luis
Domali, Ekaterini
Pangilinan, Nelinda Catherine P.
Carella, Chiara
Munaretto, Maria
Saskova, Petra
Verri, Debora
Visenzi, Chiara
Herman, Pawel
Smith, Kevin
Epstein, Elisabeth
description Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen’s kappa, Matthew’s correlation coefficient, diagnostic odds ratio and Youden’s J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes. In a comprehensive dataset from 3,652 patients across 20 centers in eight countries, an ultrasound-based AI model shows robust performance across centers, ultrasound systems, 58 histological diagnoses and patient age groups and reduced referral to experts by 63% in a retrospective triage simulation.
doi_str_mv 10.1038/s41591-024-03329-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151200205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151200205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-4ca78ec0cd2ee94fcb2dd1a3956b0ea3c2c9ad110c2e2f656e33305a2624e44b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMo1q8_4EEWvHiJTj520z0W8aNQ8KLQW0iTWdmyzdZkt-C_N3ZbBQ-eEjLPvJN5CLlkcMtAjO-iZHnJKHBJQQheUnlATlguC8oUzA_THdSYjsu8GJHTGJcAICAvj8lIlEqqQpUnZD71HQZvurr1pslWfdPVFr_fso1parctZG2VTabUhXqDPktIMLHtvcscdmj3RLsxoTY-s8ZbDOfkqDJNxIvdeUbeHh9e75_p7OVpej-ZUSsAOiqtUWO0YB1HLGVlF9w5ZkT69ALQCMttaRxjYDnyqsgLFCItYXjBJUq5EGfkZshdh_ajx9jpVR0tNo3x2PZRC5YzDsAhT-j1H3TZ9mn3ZkspVQDnKlF8oGxoYwxY6XWoVyZ8agb627sevOvkXW-9a5marnbR_WKF7qdlLzoBYgBiKvl3DL-z_4n9AmbNjrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3157760227</pqid></control><display><type>article</type><title>International multicenter validation of AI-driven ultrasound detection of ovarian cancer</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Christiansen, Filip ; Konuk, Emir ; Ganeshan, Adithya Raju ; Welch, Robert ; Palés Huix, Joana ; Czekierdowski, Artur ; Leone, Francesco Paolo Giuseppe ; Haak, Lucia Anna ; Fruscio, Robert ; Gaurilcikas, Adrius ; Franchi, Dorella ; Fischerova, Daniela ; Mor, Elisa ; Savelli, Luca ; Pascual, Maria Àngela ; Kudla, Marek Jerzy ; Guerriero, Stefano ; Buonomo, Francesca ; Liuba, Karina ; Montik, Nina ; Alcázar, Juan Luis ; Domali, Ekaterini ; Pangilinan, Nelinda Catherine P. ; Carella, Chiara ; Munaretto, Maria ; Saskova, Petra ; Verri, Debora ; Visenzi, Chiara ; Herman, Pawel ; Smith, Kevin ; Epstein, Elisabeth</creator><creatorcontrib>Christiansen, Filip ; Konuk, Emir ; Ganeshan, Adithya Raju ; Welch, Robert ; Palés Huix, Joana ; Czekierdowski, Artur ; Leone, Francesco Paolo Giuseppe ; Haak, Lucia Anna ; Fruscio, Robert ; Gaurilcikas, Adrius ; Franchi, Dorella ; Fischerova, Daniela ; Mor, Elisa ; Savelli, Luca ; Pascual, Maria Àngela ; Kudla, Marek Jerzy ; Guerriero, Stefano ; Buonomo, Francesca ; Liuba, Karina ; Montik, Nina ; Alcázar, Juan Luis ; Domali, Ekaterini ; Pangilinan, Nelinda Catherine P. ; Carella, Chiara ; Munaretto, Maria ; Saskova, Petra ; Verri, Debora ; Visenzi, Chiara ; Herman, Pawel ; Smith, Kevin ; Epstein, Elisabeth</creatorcontrib><description>Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen’s kappa, Matthew’s correlation coefficient, diagnostic odds ratio and Youden’s J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes. In a comprehensive dataset from 3,652 patients across 20 centers in eight countries, an ultrasound-based AI model shows robust performance across centers, ultrasound systems, 58 histological diagnoses and patient age groups and reduced referral to experts by 63% in a retrospective triage simulation.</description><identifier>ISSN: 1078-8956</identifier><identifier>ISSN: 1546-170X</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-024-03329-4</identifier><identifier>PMID: 39747679</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 631/67/1517/1709 ; 631/67/2321 ; 692/700/139 ; 692/700/1421/1860 ; Accuracy ; Age groups ; Artificial intelligence ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer Research ; Correlation coefficient ; Correlation coefficients ; Datasets ; Deep learning ; Diagnostic systems ; Infectious Diseases ; Machine learning ; Medical imaging ; Metabolic Diseases ; Molecular Medicine ; Neural networks ; Neurosciences ; Ovarian cancer ; Robustness ; Sensitivity analysis ; Shortages ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Nature medicine, 2025-01, Vol.31 (1), p.189-196</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Nature Publishing Group Jan 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-4ca78ec0cd2ee94fcb2dd1a3956b0ea3c2c9ad110c2e2f656e33305a2624e44b3</cites><orcidid>0000-0001-5688-2194 ; 0000-0001-7206-9611 ; 0000-0002-5367-8056 ; 0000-0003-2298-7785 ; 0009-0008-4117-1638 ; 0000-0001-8899-3040 ; 0000-0001-9437-4553 ; 0009-0006-2690-5686 ; 0000-0003-1819-6120 ; 0000-0001-5749-7968 ; 0000-0002-3950-5538 ; 0000-0002-6587-2622 ; 0000-0002-7224-3218 ; 0000-0001-8216-6458 ; 0000-0001-5095-6981 ; 0000-0002-7406-8804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-024-03329-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-024-03329-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39747679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christiansen, Filip</creatorcontrib><creatorcontrib>Konuk, Emir</creatorcontrib><creatorcontrib>Ganeshan, Adithya Raju</creatorcontrib><creatorcontrib>Welch, Robert</creatorcontrib><creatorcontrib>Palés Huix, Joana</creatorcontrib><creatorcontrib>Czekierdowski, Artur</creatorcontrib><creatorcontrib>Leone, Francesco Paolo Giuseppe</creatorcontrib><creatorcontrib>Haak, Lucia Anna</creatorcontrib><creatorcontrib>Fruscio, Robert</creatorcontrib><creatorcontrib>Gaurilcikas, Adrius</creatorcontrib><creatorcontrib>Franchi, Dorella</creatorcontrib><creatorcontrib>Fischerova, Daniela</creatorcontrib><creatorcontrib>Mor, Elisa</creatorcontrib><creatorcontrib>Savelli, Luca</creatorcontrib><creatorcontrib>Pascual, Maria Àngela</creatorcontrib><creatorcontrib>Kudla, Marek Jerzy</creatorcontrib><creatorcontrib>Guerriero, Stefano</creatorcontrib><creatorcontrib>Buonomo, Francesca</creatorcontrib><creatorcontrib>Liuba, Karina</creatorcontrib><creatorcontrib>Montik, Nina</creatorcontrib><creatorcontrib>Alcázar, Juan Luis</creatorcontrib><creatorcontrib>Domali, Ekaterini</creatorcontrib><creatorcontrib>Pangilinan, Nelinda Catherine P.</creatorcontrib><creatorcontrib>Carella, Chiara</creatorcontrib><creatorcontrib>Munaretto, Maria</creatorcontrib><creatorcontrib>Saskova, Petra</creatorcontrib><creatorcontrib>Verri, Debora</creatorcontrib><creatorcontrib>Visenzi, Chiara</creatorcontrib><creatorcontrib>Herman, Pawel</creatorcontrib><creatorcontrib>Smith, Kevin</creatorcontrib><creatorcontrib>Epstein, Elisabeth</creatorcontrib><title>International multicenter validation of AI-driven ultrasound detection of ovarian cancer</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen’s kappa, Matthew’s correlation coefficient, diagnostic odds ratio and Youden’s J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes. In a comprehensive dataset from 3,652 patients across 20 centers in eight countries, an ultrasound-based AI model shows robust performance across centers, ultrasound systems, 58 histological diagnoses and patient age groups and reduced referral to experts by 63% in a retrospective triage simulation.</description><subject>631/114/1305</subject><subject>631/67/1517/1709</subject><subject>631/67/2321</subject><subject>692/700/139</subject><subject>692/700/1421/1860</subject><subject>Accuracy</subject><subject>Age groups</subject><subject>Artificial intelligence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnostic systems</subject><subject>Infectious Diseases</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Ovarian cancer</subject><subject>Robustness</subject><subject>Sensitivity analysis</subject><subject>Shortages</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>1078-8956</issn><issn>1546-170X</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMo1q8_4EEWvHiJTj520z0W8aNQ8KLQW0iTWdmyzdZkt-C_N3ZbBQ-eEjLPvJN5CLlkcMtAjO-iZHnJKHBJQQheUnlATlguC8oUzA_THdSYjsu8GJHTGJcAICAvj8lIlEqqQpUnZD71HQZvurr1pslWfdPVFr_fso1parctZG2VTabUhXqDPktIMLHtvcscdmj3RLsxoTY-s8ZbDOfkqDJNxIvdeUbeHh9e75_p7OVpej-ZUSsAOiqtUWO0YB1HLGVlF9w5ZkT69ALQCMttaRxjYDnyqsgLFCItYXjBJUq5EGfkZshdh_ajx9jpVR0tNo3x2PZRC5YzDsAhT-j1H3TZ9mn3ZkspVQDnKlF8oGxoYwxY6XWoVyZ8agb627sevOvkXW-9a5marnbR_WKF7qdlLzoBYgBiKvl3DL-z_4n9AmbNjrk</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Christiansen, Filip</creator><creator>Konuk, Emir</creator><creator>Ganeshan, Adithya Raju</creator><creator>Welch, Robert</creator><creator>Palés Huix, Joana</creator><creator>Czekierdowski, Artur</creator><creator>Leone, Francesco Paolo Giuseppe</creator><creator>Haak, Lucia Anna</creator><creator>Fruscio, Robert</creator><creator>Gaurilcikas, Adrius</creator><creator>Franchi, Dorella</creator><creator>Fischerova, Daniela</creator><creator>Mor, Elisa</creator><creator>Savelli, Luca</creator><creator>Pascual, Maria Àngela</creator><creator>Kudla, Marek Jerzy</creator><creator>Guerriero, Stefano</creator><creator>Buonomo, Francesca</creator><creator>Liuba, Karina</creator><creator>Montik, Nina</creator><creator>Alcázar, Juan Luis</creator><creator>Domali, Ekaterini</creator><creator>Pangilinan, Nelinda Catherine P.</creator><creator>Carella, Chiara</creator><creator>Munaretto, Maria</creator><creator>Saskova, Petra</creator><creator>Verri, Debora</creator><creator>Visenzi, Chiara</creator><creator>Herman, Pawel</creator><creator>Smith, Kevin</creator><creator>Epstein, Elisabeth</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5688-2194</orcidid><orcidid>https://orcid.org/0000-0001-7206-9611</orcidid><orcidid>https://orcid.org/0000-0002-5367-8056</orcidid><orcidid>https://orcid.org/0000-0003-2298-7785</orcidid><orcidid>https://orcid.org/0009-0008-4117-1638</orcidid><orcidid>https://orcid.org/0000-0001-8899-3040</orcidid><orcidid>https://orcid.org/0000-0001-9437-4553</orcidid><orcidid>https://orcid.org/0009-0006-2690-5686</orcidid><orcidid>https://orcid.org/0000-0003-1819-6120</orcidid><orcidid>https://orcid.org/0000-0001-5749-7968</orcidid><orcidid>https://orcid.org/0000-0002-3950-5538</orcidid><orcidid>https://orcid.org/0000-0002-6587-2622</orcidid><orcidid>https://orcid.org/0000-0002-7224-3218</orcidid><orcidid>https://orcid.org/0000-0001-8216-6458</orcidid><orcidid>https://orcid.org/0000-0001-5095-6981</orcidid><orcidid>https://orcid.org/0000-0002-7406-8804</orcidid></search><sort><creationdate>20250102</creationdate><title>International multicenter validation of AI-driven ultrasound detection of ovarian cancer</title><author>Christiansen, Filip ; Konuk, Emir ; Ganeshan, Adithya Raju ; Welch, Robert ; Palés Huix, Joana ; Czekierdowski, Artur ; Leone, Francesco Paolo Giuseppe ; Haak, Lucia Anna ; Fruscio, Robert ; Gaurilcikas, Adrius ; Franchi, Dorella ; Fischerova, Daniela ; Mor, Elisa ; Savelli, Luca ; Pascual, Maria Àngela ; Kudla, Marek Jerzy ; Guerriero, Stefano ; Buonomo, Francesca ; Liuba, Karina ; Montik, Nina ; Alcázar, Juan Luis ; Domali, Ekaterini ; Pangilinan, Nelinda Catherine P. ; Carella, Chiara ; Munaretto, Maria ; Saskova, Petra ; Verri, Debora ; Visenzi, Chiara ; Herman, Pawel ; Smith, Kevin ; Epstein, Elisabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-4ca78ec0cd2ee94fcb2dd1a3956b0ea3c2c9ad110c2e2f656e33305a2624e44b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>631/114/1305</topic><topic>631/67/1517/1709</topic><topic>631/67/2321</topic><topic>692/700/139</topic><topic>692/700/1421/1860</topic><topic>Accuracy</topic><topic>Age groups</topic><topic>Artificial intelligence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnostic systems</topic><topic>Infectious Diseases</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Ovarian cancer</topic><topic>Robustness</topic><topic>Sensitivity analysis</topic><topic>Shortages</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christiansen, Filip</creatorcontrib><creatorcontrib>Konuk, Emir</creatorcontrib><creatorcontrib>Ganeshan, Adithya Raju</creatorcontrib><creatorcontrib>Welch, Robert</creatorcontrib><creatorcontrib>Palés Huix, Joana</creatorcontrib><creatorcontrib>Czekierdowski, Artur</creatorcontrib><creatorcontrib>Leone, Francesco Paolo Giuseppe</creatorcontrib><creatorcontrib>Haak, Lucia Anna</creatorcontrib><creatorcontrib>Fruscio, Robert</creatorcontrib><creatorcontrib>Gaurilcikas, Adrius</creatorcontrib><creatorcontrib>Franchi, Dorella</creatorcontrib><creatorcontrib>Fischerova, Daniela</creatorcontrib><creatorcontrib>Mor, Elisa</creatorcontrib><creatorcontrib>Savelli, Luca</creatorcontrib><creatorcontrib>Pascual, Maria Àngela</creatorcontrib><creatorcontrib>Kudla, Marek Jerzy</creatorcontrib><creatorcontrib>Guerriero, Stefano</creatorcontrib><creatorcontrib>Buonomo, Francesca</creatorcontrib><creatorcontrib>Liuba, Karina</creatorcontrib><creatorcontrib>Montik, Nina</creatorcontrib><creatorcontrib>Alcázar, Juan Luis</creatorcontrib><creatorcontrib>Domali, Ekaterini</creatorcontrib><creatorcontrib>Pangilinan, Nelinda Catherine P.</creatorcontrib><creatorcontrib>Carella, Chiara</creatorcontrib><creatorcontrib>Munaretto, Maria</creatorcontrib><creatorcontrib>Saskova, Petra</creatorcontrib><creatorcontrib>Verri, Debora</creatorcontrib><creatorcontrib>Visenzi, Chiara</creatorcontrib><creatorcontrib>Herman, Pawel</creatorcontrib><creatorcontrib>Smith, Kevin</creatorcontrib><creatorcontrib>Epstein, Elisabeth</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christiansen, Filip</au><au>Konuk, Emir</au><au>Ganeshan, Adithya Raju</au><au>Welch, Robert</au><au>Palés Huix, Joana</au><au>Czekierdowski, Artur</au><au>Leone, Francesco Paolo Giuseppe</au><au>Haak, Lucia Anna</au><au>Fruscio, Robert</au><au>Gaurilcikas, Adrius</au><au>Franchi, Dorella</au><au>Fischerova, Daniela</au><au>Mor, Elisa</au><au>Savelli, Luca</au><au>Pascual, Maria Àngela</au><au>Kudla, Marek Jerzy</au><au>Guerriero, Stefano</au><au>Buonomo, Francesca</au><au>Liuba, Karina</au><au>Montik, Nina</au><au>Alcázar, Juan Luis</au><au>Domali, Ekaterini</au><au>Pangilinan, Nelinda Catherine P.</au><au>Carella, Chiara</au><au>Munaretto, Maria</au><au>Saskova, Petra</au><au>Verri, Debora</au><au>Visenzi, Chiara</au><au>Herman, Pawel</au><au>Smith, Kevin</au><au>Epstein, Elisabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>International multicenter validation of AI-driven ultrasound detection of ovarian cancer</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2025-01-02</date><risdate>2025</risdate><volume>31</volume><issue>1</issue><spage>189</spage><epage>196</epage><pages>189-196</pages><issn>1078-8956</issn><issn>1546-170X</issn><eissn>1546-170X</eissn><abstract>Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen’s kappa, Matthew’s correlation coefficient, diagnostic odds ratio and Youden’s J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes. In a comprehensive dataset from 3,652 patients across 20 centers in eight countries, an ultrasound-based AI model shows robust performance across centers, ultrasound systems, 58 histological diagnoses and patient age groups and reduced referral to experts by 63% in a retrospective triage simulation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>39747679</pmid><doi>10.1038/s41591-024-03329-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5688-2194</orcidid><orcidid>https://orcid.org/0000-0001-7206-9611</orcidid><orcidid>https://orcid.org/0000-0002-5367-8056</orcidid><orcidid>https://orcid.org/0000-0003-2298-7785</orcidid><orcidid>https://orcid.org/0009-0008-4117-1638</orcidid><orcidid>https://orcid.org/0000-0001-8899-3040</orcidid><orcidid>https://orcid.org/0000-0001-9437-4553</orcidid><orcidid>https://orcid.org/0009-0006-2690-5686</orcidid><orcidid>https://orcid.org/0000-0003-1819-6120</orcidid><orcidid>https://orcid.org/0000-0001-5749-7968</orcidid><orcidid>https://orcid.org/0000-0002-3950-5538</orcidid><orcidid>https://orcid.org/0000-0002-6587-2622</orcidid><orcidid>https://orcid.org/0000-0002-7224-3218</orcidid><orcidid>https://orcid.org/0000-0001-8216-6458</orcidid><orcidid>https://orcid.org/0000-0001-5095-6981</orcidid><orcidid>https://orcid.org/0000-0002-7406-8804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2025-01, Vol.31 (1), p.189-196
issn 1078-8956
1546-170X
1546-170X
language eng
recordid cdi_proquest_miscellaneous_3151200205
source Nature; Springer Nature - Complete Springer Journals
subjects 631/114/1305
631/67/1517/1709
631/67/2321
692/700/139
692/700/1421/1860
Accuracy
Age groups
Artificial intelligence
Biomedical and Life Sciences
Biomedicine
Cancer
Cancer Research
Correlation coefficient
Correlation coefficients
Datasets
Deep learning
Diagnostic systems
Infectious Diseases
Machine learning
Medical imaging
Metabolic Diseases
Molecular Medicine
Neural networks
Neurosciences
Ovarian cancer
Robustness
Sensitivity analysis
Shortages
Ultrasonic imaging
Ultrasound
title International multicenter validation of AI-driven ultrasound detection of ovarian cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=International%20multicenter%20validation%20of%20AI-driven%20ultrasound%20detection%20of%20ovarian%20cancer&rft.jtitle=Nature%20medicine&rft.au=Christiansen,%20Filip&rft.date=2025-01-02&rft.volume=31&rft.issue=1&rft.spage=189&rft.epage=196&rft.pages=189-196&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-024-03329-4&rft_dat=%3Cproquest_cross%3E3151200205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3157760227&rft_id=info:pmid/39747679&rfr_iscdi=true