Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer
Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2025-01, Vol.147 (2), p.1831-1839 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1839 |
---|---|
container_issue | 2 |
container_start_page | 1831 |
container_title | Journal of the American Chemical Society |
container_volume | 147 |
creator | Wang, Jin Kaiyum, Yunus A. Li, Xiangmei Lei, Hongtao Johnson, Philip E. Liu, Juewen |
description | Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc3+ was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc3+ exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+; (2) Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, and Y3+; and (3) Sc3+. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true K d of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc3+ in real samples. |
doi_str_mv | 10.1021/jacs.4c13768 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3150838122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150838122</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-2b727bd5bbf73dbec15934e182e7c932e19b7331e8ce9ef4918c9f70c9ba6833</originalsourceid><addsrcrecordid>eNptkLtPwzAQhy0EouWxMSOPDKT47CS2x6otD1EeQmWOHOcCqfIodjL0vydRCyxM1vm--53uI-QC2AQYh5u1sX4SWhAyVgdkDBFnQQQ8PiRjxhgPpIrFiJx4v-7LkCs4JiOhZShCqcdk_ljU2BaWmjqj0zwv6qLd0lfX5EVZ1B_0zTikC-PaT_qErSk9fffDv6Hz5ymdblpToTsjR3nfwvP9e0pWt4vV7D5Yvtw9zKbLwHCANuCp5DLNojTNpchStBBpESIojtJqwRF0KoUAVBY15qEGZXUumdWpiZUQp-RqF7txzVeHvk2qwlssS1Nj0_lEQMSUUMB5j17vUOsa7x3mycYVlXHbBFgyaEsGbcleW49f7pO7tMLsF_7x9Ld6mFo3nav7O__P-ga1DnRX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150838122</pqid></control><display><type>article</type><title>Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Wang, Jin ; Kaiyum, Yunus A. ; Li, Xiangmei ; Lei, Hongtao ; Johnson, Philip E. ; Liu, Juewen</creator><creatorcontrib>Wang, Jin ; Kaiyum, Yunus A. ; Li, Xiangmei ; Lei, Hongtao ; Johnson, Philip E. ; Liu, Juewen</creatorcontrib><description>Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc3+ was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc3+ exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+; (2) Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, and Y3+; and (3) Sc3+. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true K d of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc3+ in real samples.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c13768</identifier><identifier>PMID: 39743479</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aptamers, Nucleotide - chemistry ; Kinetics ; Metals, Rare Earth - chemistry</subject><ispartof>Journal of the American Chemical Society, 2025-01, Vol.147 (2), p.1831-1839</ispartof><rights>2025 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a211t-2b727bd5bbf73dbec15934e182e7c932e19b7331e8ce9ef4918c9f70c9ba6833</cites><orcidid>0000-0002-3871-8566 ; 0000-0002-1697-1747 ; 0000-0001-5918-9336 ; 0000-0002-5573-4891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c13768$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c13768$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39743479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Kaiyum, Yunus A.</creatorcontrib><creatorcontrib>Li, Xiangmei</creatorcontrib><creatorcontrib>Lei, Hongtao</creatorcontrib><creatorcontrib>Johnson, Philip E.</creatorcontrib><creatorcontrib>Liu, Juewen</creatorcontrib><title>Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc3+ was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc3+ exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+; (2) Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, and Y3+; and (3) Sc3+. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true K d of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc3+ in real samples.</description><subject>Aptamers, Nucleotide - chemistry</subject><subject>Kinetics</subject><subject>Metals, Rare Earth - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkLtPwzAQhy0EouWxMSOPDKT47CS2x6otD1EeQmWOHOcCqfIodjL0vydRCyxM1vm--53uI-QC2AQYh5u1sX4SWhAyVgdkDBFnQQQ8PiRjxhgPpIrFiJx4v-7LkCs4JiOhZShCqcdk_ljU2BaWmjqj0zwv6qLd0lfX5EVZ1B_0zTikC-PaT_qErSk9fffDv6Hz5ymdblpToTsjR3nfwvP9e0pWt4vV7D5Yvtw9zKbLwHCANuCp5DLNojTNpchStBBpESIojtJqwRF0KoUAVBY15qEGZXUumdWpiZUQp-RqF7txzVeHvk2qwlssS1Nj0_lEQMSUUMB5j17vUOsa7x3mycYVlXHbBFgyaEsGbcleW49f7pO7tMLsF_7x9Ld6mFo3nav7O__P-ga1DnRX</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Wang, Jin</creator><creator>Kaiyum, Yunus A.</creator><creator>Li, Xiangmei</creator><creator>Lei, Hongtao</creator><creator>Johnson, Philip E.</creator><creator>Liu, Juewen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3871-8566</orcidid><orcidid>https://orcid.org/0000-0002-1697-1747</orcidid><orcidid>https://orcid.org/0000-0001-5918-9336</orcidid><orcidid>https://orcid.org/0000-0002-5573-4891</orcidid></search><sort><creationdate>20250115</creationdate><title>Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer</title><author>Wang, Jin ; Kaiyum, Yunus A. ; Li, Xiangmei ; Lei, Hongtao ; Johnson, Philip E. ; Liu, Juewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-2b727bd5bbf73dbec15934e182e7c932e19b7331e8ce9ef4918c9f70c9ba6833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aptamers, Nucleotide - chemistry</topic><topic>Kinetics</topic><topic>Metals, Rare Earth - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Kaiyum, Yunus A.</creatorcontrib><creatorcontrib>Li, Xiangmei</creatorcontrib><creatorcontrib>Lei, Hongtao</creatorcontrib><creatorcontrib>Johnson, Philip E.</creatorcontrib><creatorcontrib>Liu, Juewen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jin</au><au>Kaiyum, Yunus A.</au><au>Li, Xiangmei</au><au>Lei, Hongtao</au><au>Johnson, Philip E.</au><au>Liu, Juewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2025-01-15</date><risdate>2025</risdate><volume>147</volume><issue>2</issue><spage>1831</spage><epage>1839</epage><pages>1831-1839</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc3+ was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc3+ exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+; (2) Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, and Y3+; and (3) Sc3+. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true K d of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc3+ in real samples.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39743479</pmid><doi>10.1021/jacs.4c13768</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3871-8566</orcidid><orcidid>https://orcid.org/0000-0002-1697-1747</orcidid><orcidid>https://orcid.org/0000-0001-5918-9336</orcidid><orcidid>https://orcid.org/0000-0002-5573-4891</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2025-01, Vol.147 (2), p.1831-1839 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3150838122 |
source | MEDLINE; American Chemical Society Publications |
subjects | Aptamers, Nucleotide - chemistry Kinetics Metals, Rare Earth - chemistry |
title | Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20and%20Affinity%20Profiling%20Rare%20Earth%20Metals%20Using%20a%20DNA%20Aptamer&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wang,%20Jin&rft.date=2025-01-15&rft.volume=147&rft.issue=2&rft.spage=1831&rft.epage=1839&rft.pages=1831-1839&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c13768&rft_dat=%3Cproquest_cross%3E3150838122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150838122&rft_id=info:pmid/39743479&rfr_iscdi=true |