Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer

Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2025-01, Vol.147 (2), p.1831-1839
Hauptverfasser: Wang, Jin, Kaiyum, Yunus A., Li, Xiangmei, Lei, Hongtao, Johnson, Philip E., Liu, Juewen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1839
container_issue 2
container_start_page 1831
container_title Journal of the American Chemical Society
container_volume 147
creator Wang, Jin
Kaiyum, Yunus A.
Li, Xiangmei
Lei, Hongtao
Johnson, Philip E.
Liu, Juewen
description Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc3+ was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc3+ exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+; (2) Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, and Y3+; and (3) Sc3+. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true K d of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc3+ in real samples.
doi_str_mv 10.1021/jacs.4c13768
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3150838122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150838122</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-2b727bd5bbf73dbec15934e182e7c932e19b7331e8ce9ef4918c9f70c9ba6833</originalsourceid><addsrcrecordid>eNptkLtPwzAQhy0EouWxMSOPDKT47CS2x6otD1EeQmWOHOcCqfIodjL0vydRCyxM1vm--53uI-QC2AQYh5u1sX4SWhAyVgdkDBFnQQQ8PiRjxhgPpIrFiJx4v-7LkCs4JiOhZShCqcdk_ljU2BaWmjqj0zwv6qLd0lfX5EVZ1B_0zTikC-PaT_qErSk9fffDv6Hz5ymdblpToTsjR3nfwvP9e0pWt4vV7D5Yvtw9zKbLwHCANuCp5DLNojTNpchStBBpESIojtJqwRF0KoUAVBY15qEGZXUumdWpiZUQp-RqF7txzVeHvk2qwlssS1Nj0_lEQMSUUMB5j17vUOsa7x3mycYVlXHbBFgyaEsGbcleW49f7pO7tMLsF_7x9Ld6mFo3nav7O__P-ga1DnRX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150838122</pqid></control><display><type>article</type><title>Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Wang, Jin ; Kaiyum, Yunus A. ; Li, Xiangmei ; Lei, Hongtao ; Johnson, Philip E. ; Liu, Juewen</creator><creatorcontrib>Wang, Jin ; Kaiyum, Yunus A. ; Li, Xiangmei ; Lei, Hongtao ; Johnson, Philip E. ; Liu, Juewen</creatorcontrib><description>Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc3+ was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc3+ exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+; (2) Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, and Y3+; and (3) Sc3+. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true K d of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc3+ in real samples.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c13768</identifier><identifier>PMID: 39743479</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aptamers, Nucleotide - chemistry ; Kinetics ; Metals, Rare Earth - chemistry</subject><ispartof>Journal of the American Chemical Society, 2025-01, Vol.147 (2), p.1831-1839</ispartof><rights>2025 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a211t-2b727bd5bbf73dbec15934e182e7c932e19b7331e8ce9ef4918c9f70c9ba6833</cites><orcidid>0000-0002-3871-8566 ; 0000-0002-1697-1747 ; 0000-0001-5918-9336 ; 0000-0002-5573-4891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c13768$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c13768$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39743479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Kaiyum, Yunus A.</creatorcontrib><creatorcontrib>Li, Xiangmei</creatorcontrib><creatorcontrib>Lei, Hongtao</creatorcontrib><creatorcontrib>Johnson, Philip E.</creatorcontrib><creatorcontrib>Liu, Juewen</creatorcontrib><title>Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc3+ was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc3+ exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+; (2) Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, and Y3+; and (3) Sc3+. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true K d of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc3+ in real samples.</description><subject>Aptamers, Nucleotide - chemistry</subject><subject>Kinetics</subject><subject>Metals, Rare Earth - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkLtPwzAQhy0EouWxMSOPDKT47CS2x6otD1EeQmWOHOcCqfIodjL0vydRCyxM1vm--53uI-QC2AQYh5u1sX4SWhAyVgdkDBFnQQQ8PiRjxhgPpIrFiJx4v-7LkCs4JiOhZShCqcdk_ljU2BaWmjqj0zwv6qLd0lfX5EVZ1B_0zTikC-PaT_qErSk9fffDv6Hz5ymdblpToTsjR3nfwvP9e0pWt4vV7D5Yvtw9zKbLwHCANuCp5DLNojTNpchStBBpESIojtJqwRF0KoUAVBY15qEGZXUumdWpiZUQp-RqF7txzVeHvk2qwlssS1Nj0_lEQMSUUMB5j17vUOsa7x3mycYVlXHbBFgyaEsGbcleW49f7pO7tMLsF_7x9Ld6mFo3nav7O__P-ga1DnRX</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Wang, Jin</creator><creator>Kaiyum, Yunus A.</creator><creator>Li, Xiangmei</creator><creator>Lei, Hongtao</creator><creator>Johnson, Philip E.</creator><creator>Liu, Juewen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3871-8566</orcidid><orcidid>https://orcid.org/0000-0002-1697-1747</orcidid><orcidid>https://orcid.org/0000-0001-5918-9336</orcidid><orcidid>https://orcid.org/0000-0002-5573-4891</orcidid></search><sort><creationdate>20250115</creationdate><title>Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer</title><author>Wang, Jin ; Kaiyum, Yunus A. ; Li, Xiangmei ; Lei, Hongtao ; Johnson, Philip E. ; Liu, Juewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-2b727bd5bbf73dbec15934e182e7c932e19b7331e8ce9ef4918c9f70c9ba6833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aptamers, Nucleotide - chemistry</topic><topic>Kinetics</topic><topic>Metals, Rare Earth - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Kaiyum, Yunus A.</creatorcontrib><creatorcontrib>Li, Xiangmei</creatorcontrib><creatorcontrib>Lei, Hongtao</creatorcontrib><creatorcontrib>Johnson, Philip E.</creatorcontrib><creatorcontrib>Liu, Juewen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jin</au><au>Kaiyum, Yunus A.</au><au>Li, Xiangmei</au><au>Lei, Hongtao</au><au>Johnson, Philip E.</au><au>Liu, Juewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2025-01-15</date><risdate>2025</risdate><volume>147</volume><issue>2</issue><spage>1831</spage><epage>1839</epage><pages>1831-1839</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc3+ was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc3+ exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+; (2) Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, and Y3+; and (3) Sc3+. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true K d of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc3+ in real samples.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39743479</pmid><doi>10.1021/jacs.4c13768</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3871-8566</orcidid><orcidid>https://orcid.org/0000-0002-1697-1747</orcidid><orcidid>https://orcid.org/0000-0001-5918-9336</orcidid><orcidid>https://orcid.org/0000-0002-5573-4891</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2025-01, Vol.147 (2), p.1831-1839
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3150838122
source MEDLINE; American Chemical Society Publications
subjects Aptamers, Nucleotide - chemistry
Kinetics
Metals, Rare Earth - chemistry
title Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20and%20Affinity%20Profiling%20Rare%20Earth%20Metals%20Using%20a%20DNA%20Aptamer&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wang,%20Jin&rft.date=2025-01-15&rft.volume=147&rft.issue=2&rft.spage=1831&rft.epage=1839&rft.pages=1831-1839&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c13768&rft_dat=%3Cproquest_cross%3E3150838122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150838122&rft_id=info:pmid/39743479&rfr_iscdi=true