Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis

Ca2+ overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca2+ homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Redox biology 2025-02, Vol.79, p.103471, Article 103471
Hauptverfasser: Xu, Honglin, Chen, Xin, Luo, Shangfei, Jiang, Jintao, Pan, Xianmei, He, Yu, Deng, Bo, Liu, Silin, Wan, Rentao, Lin, Liwen, Tan, Qiaorui, Chen, Xiaoting, Yao, Youfen, He, Bin, An, Yajuan, Li, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103471
container_title Redox biology
container_volume 79
creator Xu, Honglin
Chen, Xin
Luo, Shangfei
Jiang, Jintao
Pan, Xianmei
He, Yu
Deng, Bo
Liu, Silin
Wan, Rentao
Lin, Liwen
Tan, Qiaorui
Chen, Xiaoting
Yao, Youfen
He, Bin
An, Yajuan
Li, Jing
description Ca2+ overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca2+ homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury. We showed that the expression of myocardial Piezo1 was elevated in the infracted area of I/R and cardiomyocyte-specific Piezo1 deficiency (Piezo1△Myh6) mice attenuated I/R by decreasing infarct size and cardiac dysfunction. Piezo1△Myh6 regulated mitochondrial fusion and fission to improve mitochondrial function and decrease inflammation and oxidative stress in vivo and in vitro. Mechanistically, myocardial Piezo1 knockout alleviated intracellular calcium overload to normalize calpain-associated mitochondrial homeostasis. Our findings indicated that Piezo1 depletion in cardiomyocytes partially restored mitochondrial homeostasis during cardiac ischemia/reperfusion (I/R) injury. This study suggests an innovative therapeutic strategy to alleviate cardiac I/R injury.
doi_str_mv 10.1016/j.redox.2024.103471
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_3150523003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221323172400449X</els_id><doaj_id>oai_doaj_org_article_c71388d53dec4bee8de7ede55aac0d72</doaj_id><sourcerecordid>3150523003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2765-3805e69248cb1c1bf0974984eea5d98ba8711a18d7e68895f4dc9b3524d7dd033</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIVqW_AAnlyCVbf8Sxc0AIrYBWqgQHOFuOPdmdVRIHO1kRfj3eTanaC77YM5735mnmZdlbSjaU0OrmsAng_O8NI6xMGV5K-iK7ZIzygnEqXz55X2TXMR5IOkqVjJLX2QWvZUl4xS6z49YEh75fvF0mKOIIFlu0-XeEP57mDlKAMNgl73HCnZkg5hjtHno0RYARQjtH9EOOw2EOS94s-RggQjjisDthvN37wQU0Xb73Pfg4mYjxTfaqNV2E64f7Kvv55fOP7W1x_-3r3fbTfWGZrETBFRFQ1axUtqGWNi1JwmtVAhjhatUYJSk1VDkJlVK1aEtn64YLVjrpHOH8KrtbeZ03Bz0G7E1YtDeozwkfdtqECW0H2krKlXKCO7BlA6AcSHAghDGWOMkS18eVa5ybHpyFYQqme0b6_GfAvd75o6ZUCsKUSAzvHxiC_zVDnHSfZgldZwbwc9ScCiIYJ2fhfC21wccYoH3sQ4k-OUAf9NkB-uQAvTogod49lfiI-bfvVPBhLYA09CNC0PG8XnAYwE5pKvjfBn8BQZvHGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150523003</pqid></control><display><type>article</type><title>Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Xu, Honglin ; Chen, Xin ; Luo, Shangfei ; Jiang, Jintao ; Pan, Xianmei ; He, Yu ; Deng, Bo ; Liu, Silin ; Wan, Rentao ; Lin, Liwen ; Tan, Qiaorui ; Chen, Xiaoting ; Yao, Youfen ; He, Bin ; An, Yajuan ; Li, Jing</creator><creatorcontrib>Xu, Honglin ; Chen, Xin ; Luo, Shangfei ; Jiang, Jintao ; Pan, Xianmei ; He, Yu ; Deng, Bo ; Liu, Silin ; Wan, Rentao ; Lin, Liwen ; Tan, Qiaorui ; Chen, Xiaoting ; Yao, Youfen ; He, Bin ; An, Yajuan ; Li, Jing</creatorcontrib><description>Ca2+ overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca2+ homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury. We showed that the expression of myocardial Piezo1 was elevated in the infracted area of I/R and cardiomyocyte-specific Piezo1 deficiency (Piezo1△Myh6) mice attenuated I/R by decreasing infarct size and cardiac dysfunction. Piezo1△Myh6 regulated mitochondrial fusion and fission to improve mitochondrial function and decrease inflammation and oxidative stress in vivo and in vitro. Mechanistically, myocardial Piezo1 knockout alleviated intracellular calcium overload to normalize calpain-associated mitochondrial homeostasis. Our findings indicated that Piezo1 depletion in cardiomyocytes partially restored mitochondrial homeostasis during cardiac ischemia/reperfusion (I/R) injury. This study suggests an innovative therapeutic strategy to alleviate cardiac I/R injury.</description><identifier>ISSN: 2213-2317</identifier><identifier>EISSN: 2213-2317</identifier><identifier>DOI: 10.1016/j.redox.2024.103471</identifier><identifier>PMID: 39740362</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Calcium - metabolism ; Calpain ; Cardiomyocytes ; Disease Models, Animal ; Homeostasis ; I/R ; Inflammation ; Ion Channels - genetics ; Ion Channels - metabolism ; Male ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Dynamics - genetics ; Myocardial Reperfusion Injury - genetics ; Myocardial Reperfusion Injury - metabolism ; Myocardial Reperfusion Injury - pathology ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; Oxidative Stress ; Piezo1 ; Research Paper</subject><ispartof>Redox biology, 2025-02, Vol.79, p.103471, Article 103471</ispartof><rights>2025 The Authors</rights><rights>Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2025 The Authors. Published by Elsevier B.V. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2765-3805e69248cb1c1bf0974984eea5d98ba8711a18d7e68895f4dc9b3524d7dd033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750285/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750285/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39740362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Honglin</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Luo, Shangfei</creatorcontrib><creatorcontrib>Jiang, Jintao</creatorcontrib><creatorcontrib>Pan, Xianmei</creatorcontrib><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Deng, Bo</creatorcontrib><creatorcontrib>Liu, Silin</creatorcontrib><creatorcontrib>Wan, Rentao</creatorcontrib><creatorcontrib>Lin, Liwen</creatorcontrib><creatorcontrib>Tan, Qiaorui</creatorcontrib><creatorcontrib>Chen, Xiaoting</creatorcontrib><creatorcontrib>Yao, Youfen</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>An, Yajuan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><title>Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis</title><title>Redox biology</title><addtitle>Redox Biol</addtitle><description>Ca2+ overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca2+ homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury. We showed that the expression of myocardial Piezo1 was elevated in the infracted area of I/R and cardiomyocyte-specific Piezo1 deficiency (Piezo1△Myh6) mice attenuated I/R by decreasing infarct size and cardiac dysfunction. Piezo1△Myh6 regulated mitochondrial fusion and fission to improve mitochondrial function and decrease inflammation and oxidative stress in vivo and in vitro. Mechanistically, myocardial Piezo1 knockout alleviated intracellular calcium overload to normalize calpain-associated mitochondrial homeostasis. Our findings indicated that Piezo1 depletion in cardiomyocytes partially restored mitochondrial homeostasis during cardiac ischemia/reperfusion (I/R) injury. This study suggests an innovative therapeutic strategy to alleviate cardiac I/R injury.</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Calpain</subject><subject>Cardiomyocytes</subject><subject>Disease Models, Animal</subject><subject>Homeostasis</subject><subject>I/R</subject><subject>Inflammation</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Dynamics - genetics</subject><subject>Myocardial Reperfusion Injury - genetics</subject><subject>Myocardial Reperfusion Injury - metabolism</subject><subject>Myocardial Reperfusion Injury - pathology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Oxidative Stress</subject><subject>Piezo1</subject><subject>Research Paper</subject><issn>2213-2317</issn><issn>2213-2317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQjRCIVqW_AAnlyCVbf8Sxc0AIrYBWqgQHOFuOPdmdVRIHO1kRfj3eTanaC77YM5735mnmZdlbSjaU0OrmsAng_O8NI6xMGV5K-iK7ZIzygnEqXz55X2TXMR5IOkqVjJLX2QWvZUl4xS6z49YEh75fvF0mKOIIFlu0-XeEP57mDlKAMNgl73HCnZkg5hjtHno0RYARQjtH9EOOw2EOS94s-RggQjjisDthvN37wQU0Xb73Pfg4mYjxTfaqNV2E64f7Kvv55fOP7W1x_-3r3fbTfWGZrETBFRFQ1axUtqGWNi1JwmtVAhjhatUYJSk1VDkJlVK1aEtn64YLVjrpHOH8KrtbeZ03Bz0G7E1YtDeozwkfdtqECW0H2krKlXKCO7BlA6AcSHAghDGWOMkS18eVa5ybHpyFYQqme0b6_GfAvd75o6ZUCsKUSAzvHxiC_zVDnHSfZgldZwbwc9ScCiIYJ2fhfC21wccYoH3sQ4k-OUAf9NkB-uQAvTogod49lfiI-bfvVPBhLYA09CNC0PG8XnAYwE5pKvjfBn8BQZvHGw</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Xu, Honglin</creator><creator>Chen, Xin</creator><creator>Luo, Shangfei</creator><creator>Jiang, Jintao</creator><creator>Pan, Xianmei</creator><creator>He, Yu</creator><creator>Deng, Bo</creator><creator>Liu, Silin</creator><creator>Wan, Rentao</creator><creator>Lin, Liwen</creator><creator>Tan, Qiaorui</creator><creator>Chen, Xiaoting</creator><creator>Yao, Youfen</creator><creator>He, Bin</creator><creator>An, Yajuan</creator><creator>Li, Jing</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>202502</creationdate><title>Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis</title><author>Xu, Honglin ; Chen, Xin ; Luo, Shangfei ; Jiang, Jintao ; Pan, Xianmei ; He, Yu ; Deng, Bo ; Liu, Silin ; Wan, Rentao ; Lin, Liwen ; Tan, Qiaorui ; Chen, Xiaoting ; Yao, Youfen ; He, Bin ; An, Yajuan ; Li, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2765-3805e69248cb1c1bf0974984eea5d98ba8711a18d7e68895f4dc9b3524d7dd033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Calpain</topic><topic>Cardiomyocytes</topic><topic>Disease Models, Animal</topic><topic>Homeostasis</topic><topic>I/R</topic><topic>Inflammation</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Dynamics - genetics</topic><topic>Myocardial Reperfusion Injury - genetics</topic><topic>Myocardial Reperfusion Injury - metabolism</topic><topic>Myocardial Reperfusion Injury - pathology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Oxidative Stress</topic><topic>Piezo1</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Honglin</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Luo, Shangfei</creatorcontrib><creatorcontrib>Jiang, Jintao</creatorcontrib><creatorcontrib>Pan, Xianmei</creatorcontrib><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Deng, Bo</creatorcontrib><creatorcontrib>Liu, Silin</creatorcontrib><creatorcontrib>Wan, Rentao</creatorcontrib><creatorcontrib>Lin, Liwen</creatorcontrib><creatorcontrib>Tan, Qiaorui</creatorcontrib><creatorcontrib>Chen, Xiaoting</creatorcontrib><creatorcontrib>Yao, Youfen</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>An, Yajuan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Redox biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Honglin</au><au>Chen, Xin</au><au>Luo, Shangfei</au><au>Jiang, Jintao</au><au>Pan, Xianmei</au><au>He, Yu</au><au>Deng, Bo</au><au>Liu, Silin</au><au>Wan, Rentao</au><au>Lin, Liwen</au><au>Tan, Qiaorui</au><au>Chen, Xiaoting</au><au>Yao, Youfen</au><au>He, Bin</au><au>An, Yajuan</au><au>Li, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis</atitle><jtitle>Redox biology</jtitle><addtitle>Redox Biol</addtitle><date>2025-02</date><risdate>2025</risdate><volume>79</volume><spage>103471</spage><pages>103471-</pages><artnum>103471</artnum><issn>2213-2317</issn><eissn>2213-2317</eissn><abstract>Ca2+ overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca2+ homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury. We showed that the expression of myocardial Piezo1 was elevated in the infracted area of I/R and cardiomyocyte-specific Piezo1 deficiency (Piezo1△Myh6) mice attenuated I/R by decreasing infarct size and cardiac dysfunction. Piezo1△Myh6 regulated mitochondrial fusion and fission to improve mitochondrial function and decrease inflammation and oxidative stress in vivo and in vitro. Mechanistically, myocardial Piezo1 knockout alleviated intracellular calcium overload to normalize calpain-associated mitochondrial homeostasis. Our findings indicated that Piezo1 depletion in cardiomyocytes partially restored mitochondrial homeostasis during cardiac ischemia/reperfusion (I/R) injury. This study suggests an innovative therapeutic strategy to alleviate cardiac I/R injury.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39740362</pmid><doi>10.1016/j.redox.2024.103471</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2213-2317
ispartof Redox biology, 2025-02, Vol.79, p.103471, Article 103471
issn 2213-2317
2213-2317
language eng
recordid cdi_proquest_miscellaneous_3150523003
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Calcium - metabolism
Calpain
Cardiomyocytes
Disease Models, Animal
Homeostasis
I/R
Inflammation
Ion Channels - genetics
Ion Channels - metabolism
Male
Mice
Mice, Knockout
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial Dynamics - genetics
Myocardial Reperfusion Injury - genetics
Myocardial Reperfusion Injury - metabolism
Myocardial Reperfusion Injury - pathology
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
Oxidative Stress
Piezo1
Research Paper
title Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiomyocyte-specific%20Piezo1%20deficiency%20mitigates%20ischemia-reperfusion%20injury%20by%20preserving%20mitochondrial%20homeostasis&rft.jtitle=Redox%20biology&rft.au=Xu,%20Honglin&rft.date=2025-02&rft.volume=79&rft.spage=103471&rft.pages=103471-&rft.artnum=103471&rft.issn=2213-2317&rft.eissn=2213-2317&rft_id=info:doi/10.1016/j.redox.2024.103471&rft_dat=%3Cproquest_doaj_%3E3150523003%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150523003&rft_id=info:pmid/39740362&rft_els_id=S221323172400449X&rft_doaj_id=oai_doaj_org_article_c71388d53dec4bee8de7ede55aac0d72&rfr_iscdi=true