Deciphering brain activation during wrist movements: comparative fMRI and fNIRS analysis of active, passive, and imagery states

Understanding the complex activation patterns of brain regions during motor tasks is crucial. Integrated functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) offers advanced insights into how brain activity fluctuates with motor activities. This study explor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2025-01, Vol.243 (1), p.36, Article 36
Hauptverfasser: Jalalvandi, Maziar, Sharini, Hamid, Shafaghi, Lida, Alam, Nader Riyahi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 36
container_title Experimental brain research
container_volume 243
creator Jalalvandi, Maziar
Sharini, Hamid
Shafaghi, Lida
Alam, Nader Riyahi
description Understanding the complex activation patterns of brain regions during motor tasks is crucial. Integrated functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) offers advanced insights into how brain activity fluctuates with motor activities. This study explores neuronal activation patterns in the cerebral cortex during active, passive, and imagined wrist movements using these functional imaging techniques. Data were collected from 10 right-handed volunteers performing a motor task using fMRI and fNIRS. fMRI utilized a 3T scanner and a 20-channel head coil, while fNIRS recorded data with a 48-channel device at 765 nm and 855 nm. Analysis focused on key motor and sensory cortices using NIRS-SPM and SPM12, applying a significance threshold of p  
doi_str_mv 10.1007/s00221-024-06977-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3150521456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150436876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-39013e6ee914fd43343bbb1fe44fc6b4275407cb479cf5efb1d3892d90ce1f473</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCH-CALHHh0FCP7cRrbqh8rdSCVOBsOc64pNp81JMs2hN_vcmmUIkDJ4-tx-94_DD2AsQbEMKckRBSQiakzkRhjcnMI7YCrWQGIIrHbCUE6EyvwR6xY6KbeauMeMqOlDXKgoQV-_0eQ93_xFS317xMvm65D0O980PdtbwaD-e_Uk0Db7odNtgO9JaHrul9mpgd8nh5teG-rXj8srn6NlV-u6eaeBeXJDzlvSc6FDNWN_4a057T4AekZ-xJ9FvC5_frCfvx8cP388_ZxddPm_N3F1mQeTFkygpQWCBa0LHSSmlVliVE1DqGotTS5FqYUGpjQ8wxllCptZWVFQEhaqNO2Oslt0_d7Yg0uKamgNutb7EbySnIRS5B58WEvvoHvenGNI21UFoVazNTcqFC6ogSRtenabS0dyDcrMctetykxx30uPkVL--jx7LB6u-VPz4mQC0A9fPPY3ro_Z_YO5fFm3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150436876</pqid></control><display><type>article</type><title>Deciphering brain activation during wrist movements: comparative fMRI and fNIRS analysis of active, passive, and imagery states</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jalalvandi, Maziar ; Sharini, Hamid ; Shafaghi, Lida ; Alam, Nader Riyahi</creator><creatorcontrib>Jalalvandi, Maziar ; Sharini, Hamid ; Shafaghi, Lida ; Alam, Nader Riyahi</creatorcontrib><description>Understanding the complex activation patterns of brain regions during motor tasks is crucial. Integrated functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) offers advanced insights into how brain activity fluctuates with motor activities. This study explores neuronal activation patterns in the cerebral cortex during active, passive, and imagined wrist movements using these functional imaging techniques. Data were collected from 10 right-handed volunteers performing a motor task using fMRI and fNIRS. fMRI utilized a 3T scanner and a 20-channel head coil, while fNIRS recorded data with a 48-channel device at 765 nm and 855 nm. Analysis focused on key motor and sensory cortices using NIRS-SPM and SPM12, applying a significance threshold of p  &lt; 0.05 and a minimum cluster size of 10 voxels for group analysis. Super-threshold voxels were identified with FWE thresholding in SPM12. For activation map extraction we focused on the primary motor cortex, primary somatosensory cortex, somatosensory association cortex, premotor cortex, and supplementary motor cortex. Both fMRI and fNIRS detected activation in the primary motor cortex (M1). The primary somatosensory cortex was found to influence movement direction coding, with smaller activation sizes for upward movements. Combining fNIRS with fMRI provided clearer differentiation of brain activation patterns for wrist movements in various directions and conditions ( p  &lt; 0.05). This study highlights variations in left motor cortex activity across different movement states. fNIRS proved effective in detecting brain function and showed strong correlation with fMRI results, suggesting it as a viable alternative for those unable to undergo fMRI.</description><identifier>ISSN: 0014-4819</identifier><identifier>ISSN: 1432-1106</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-024-06977-7</identifier><identifier>PMID: 39739121</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedicine ; Brain mapping ; Brain Mapping - methods ; Brain research ; Cerebral cortex ; Cerebrum ; Cortex (motor) ; Cortex (premotor) ; Female ; Functional magnetic resonance imaging ; Handedness ; Hemoglobin ; Humans ; Imagination - physiology ; Infrared spectroscopy ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Mental task performance ; Movement - physiology ; Neural coding ; Neuroimaging ; Neurology ; Neurosciences ; Preventive medicine ; Research Article ; Sensory evaluation ; Somatosensory cortex ; Spectroscopy, Near-Infrared - methods ; Spectrum analysis ; Wrist ; Wrist - physiology ; Young Adult</subject><ispartof>Experimental brain research, 2025-01, Vol.243 (1), p.36, Article 36</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-39013e6ee914fd43343bbb1fe44fc6b4275407cb479cf5efb1d3892d90ce1f473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00221-024-06977-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00221-024-06977-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39739121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jalalvandi, Maziar</creatorcontrib><creatorcontrib>Sharini, Hamid</creatorcontrib><creatorcontrib>Shafaghi, Lida</creatorcontrib><creatorcontrib>Alam, Nader Riyahi</creatorcontrib><title>Deciphering brain activation during wrist movements: comparative fMRI and fNIRS analysis of active, passive, and imagery states</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>Exp Brain Res</addtitle><description>Understanding the complex activation patterns of brain regions during motor tasks is crucial. Integrated functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) offers advanced insights into how brain activity fluctuates with motor activities. This study explores neuronal activation patterns in the cerebral cortex during active, passive, and imagined wrist movements using these functional imaging techniques. Data were collected from 10 right-handed volunteers performing a motor task using fMRI and fNIRS. fMRI utilized a 3T scanner and a 20-channel head coil, while fNIRS recorded data with a 48-channel device at 765 nm and 855 nm. Analysis focused on key motor and sensory cortices using NIRS-SPM and SPM12, applying a significance threshold of p  &lt; 0.05 and a minimum cluster size of 10 voxels for group analysis. Super-threshold voxels were identified with FWE thresholding in SPM12. For activation map extraction we focused on the primary motor cortex, primary somatosensory cortex, somatosensory association cortex, premotor cortex, and supplementary motor cortex. Both fMRI and fNIRS detected activation in the primary motor cortex (M1). The primary somatosensory cortex was found to influence movement direction coding, with smaller activation sizes for upward movements. Combining fNIRS with fMRI provided clearer differentiation of brain activation patterns for wrist movements in various directions and conditions ( p  &lt; 0.05). This study highlights variations in left motor cortex activity across different movement states. fNIRS proved effective in detecting brain function and showed strong correlation with fMRI results, suggesting it as a viable alternative for those unable to undergo fMRI.</description><subject>Adult</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedicine</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Cerebral cortex</subject><subject>Cerebrum</subject><subject>Cortex (motor)</subject><subject>Cortex (premotor)</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Handedness</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Imagination - physiology</subject><subject>Infrared spectroscopy</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Mental task performance</subject><subject>Movement - physiology</subject><subject>Neural coding</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Preventive medicine</subject><subject>Research Article</subject><subject>Sensory evaluation</subject><subject>Somatosensory cortex</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Spectrum analysis</subject><subject>Wrist</subject><subject>Wrist - physiology</subject><subject>Young Adult</subject><issn>0014-4819</issn><issn>1432-1106</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EotvCH-CALHHh0FCP7cRrbqh8rdSCVOBsOc64pNp81JMs2hN_vcmmUIkDJ4-tx-94_DD2AsQbEMKckRBSQiakzkRhjcnMI7YCrWQGIIrHbCUE6EyvwR6xY6KbeauMeMqOlDXKgoQV-_0eQ93_xFS317xMvm65D0O980PdtbwaD-e_Uk0Db7odNtgO9JaHrul9mpgd8nh5teG-rXj8srn6NlV-u6eaeBeXJDzlvSc6FDNWN_4a057T4AekZ-xJ9FvC5_frCfvx8cP388_ZxddPm_N3F1mQeTFkygpQWCBa0LHSSmlVliVE1DqGotTS5FqYUGpjQ8wxllCptZWVFQEhaqNO2Oslt0_d7Yg0uKamgNutb7EbySnIRS5B58WEvvoHvenGNI21UFoVazNTcqFC6ogSRtenabS0dyDcrMctetykxx30uPkVL--jx7LB6u-VPz4mQC0A9fPPY3ro_Z_YO5fFm3Q</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Jalalvandi, Maziar</creator><creator>Sharini, Hamid</creator><creator>Shafaghi, Lida</creator><creator>Alam, Nader Riyahi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20250101</creationdate><title>Deciphering brain activation during wrist movements: comparative fMRI and fNIRS analysis of active, passive, and imagery states</title><author>Jalalvandi, Maziar ; Sharini, Hamid ; Shafaghi, Lida ; Alam, Nader Riyahi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-39013e6ee914fd43343bbb1fe44fc6b4275407cb479cf5efb1d3892d90ce1f473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adult</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedicine</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Cerebral cortex</topic><topic>Cerebrum</topic><topic>Cortex (motor)</topic><topic>Cortex (premotor)</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Handedness</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Imagination - physiology</topic><topic>Infrared spectroscopy</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Mental task performance</topic><topic>Movement - physiology</topic><topic>Neural coding</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Preventive medicine</topic><topic>Research Article</topic><topic>Sensory evaluation</topic><topic>Somatosensory cortex</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Spectrum analysis</topic><topic>Wrist</topic><topic>Wrist - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalalvandi, Maziar</creatorcontrib><creatorcontrib>Sharini, Hamid</creatorcontrib><creatorcontrib>Shafaghi, Lida</creatorcontrib><creatorcontrib>Alam, Nader Riyahi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalalvandi, Maziar</au><au>Sharini, Hamid</au><au>Shafaghi, Lida</au><au>Alam, Nader Riyahi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering brain activation during wrist movements: comparative fMRI and fNIRS analysis of active, passive, and imagery states</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><addtitle>Exp Brain Res</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>243</volume><issue>1</issue><spage>36</spage><pages>36-</pages><artnum>36</artnum><issn>0014-4819</issn><issn>1432-1106</issn><eissn>1432-1106</eissn><abstract>Understanding the complex activation patterns of brain regions during motor tasks is crucial. Integrated functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) offers advanced insights into how brain activity fluctuates with motor activities. This study explores neuronal activation patterns in the cerebral cortex during active, passive, and imagined wrist movements using these functional imaging techniques. Data were collected from 10 right-handed volunteers performing a motor task using fMRI and fNIRS. fMRI utilized a 3T scanner and a 20-channel head coil, while fNIRS recorded data with a 48-channel device at 765 nm and 855 nm. Analysis focused on key motor and sensory cortices using NIRS-SPM and SPM12, applying a significance threshold of p  &lt; 0.05 and a minimum cluster size of 10 voxels for group analysis. Super-threshold voxels were identified with FWE thresholding in SPM12. For activation map extraction we focused on the primary motor cortex, primary somatosensory cortex, somatosensory association cortex, premotor cortex, and supplementary motor cortex. Both fMRI and fNIRS detected activation in the primary motor cortex (M1). The primary somatosensory cortex was found to influence movement direction coding, with smaller activation sizes for upward movements. Combining fNIRS with fMRI provided clearer differentiation of brain activation patterns for wrist movements in various directions and conditions ( p  &lt; 0.05). This study highlights variations in left motor cortex activity across different movement states. fNIRS proved effective in detecting brain function and showed strong correlation with fMRI results, suggesting it as a viable alternative for those unable to undergo fMRI.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39739121</pmid><doi>10.1007/s00221-024-06977-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 0014-4819
ispartof Experimental brain research, 2025-01, Vol.243 (1), p.36, Article 36
issn 0014-4819
1432-1106
1432-1106
language eng
recordid cdi_proquest_miscellaneous_3150521456
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adult
Biomedical and Life Sciences
Biomedical engineering
Biomedicine
Brain mapping
Brain Mapping - methods
Brain research
Cerebral cortex
Cerebrum
Cortex (motor)
Cortex (premotor)
Female
Functional magnetic resonance imaging
Handedness
Hemoglobin
Humans
Imagination - physiology
Infrared spectroscopy
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Mental task performance
Movement - physiology
Neural coding
Neuroimaging
Neurology
Neurosciences
Preventive medicine
Research Article
Sensory evaluation
Somatosensory cortex
Spectroscopy, Near-Infrared - methods
Spectrum analysis
Wrist
Wrist - physiology
Young Adult
title Deciphering brain activation during wrist movements: comparative fMRI and fNIRS analysis of active, passive, and imagery states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20brain%20activation%20during%20wrist%20movements:%20comparative%20fMRI%20and%20fNIRS%20analysis%20of%20active,%20passive,%20and%20imagery%20states&rft.jtitle=Experimental%20brain%20research&rft.au=Jalalvandi,%20Maziar&rft.date=2025-01-01&rft.volume=243&rft.issue=1&rft.spage=36&rft.pages=36-&rft.artnum=36&rft.issn=0014-4819&rft.eissn=1432-1106&rft_id=info:doi/10.1007/s00221-024-06977-7&rft_dat=%3Cproquest_cross%3E3150436876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150436876&rft_id=info:pmid/39739121&rfr_iscdi=true