Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation

Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2025-06, Vol.317, p.123060, Article 123060
Hauptverfasser: Kong, Lingtong, Hu, Xianli, Xia, Demeng, Wu, Jianghong, Zhao, Yangpeng, Guo, Hua, Zhang, Song, Qin, Chun, Wang, Yanjun, Li, Lei, Su, Zheng, Zhu, Chen, Xu, Shuogui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 123060
container_title Biomaterials
container_volume 317
creator Kong, Lingtong
Hu, Xianli
Xia, Demeng
Wu, Jianghong
Zhao, Yangpeng
Guo, Hua
Zhang, Song
Qin, Chun
Wang, Yanjun
Li, Lei
Su, Zheng
Zhu, Chen
Xu, Shuogui
description Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.
doi_str_mv 10.1016/j.biomaterials.2024.123060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3150344929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961224005969</els_id><sourcerecordid>3150344929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1689-47a7fca2944bbc22b163b97b3ed5187ec5500238d4f8d7eafd2a06434cfb00fa3</originalsourceid><addsrcrecordid>eNqNUctuFDEQtBCILIFfQBYnLrP4NS9uaBMCaKVEAs6WH23k1dgO45lIuefD06sNiCMnq93VXV1VhLzjbMsZ7z4ctjaWZBaYo5nqVjChtlxI1rFnZMOHfmjakbXPyYZxJZqx4-KMvKr1wLBmSrwkZ3LsZSf4uCEP30xeK725vLqfcKOnu_V7A_lXzAAzlnvjlmKNi9OEMGcqROpKsmapFK8IcUo05gBuiSVXehcNTbAYW6bosIE3BtyTHVCTPX5kJKExpTWXVPyKnDj3mrwIqATePL3n5Ofnyx-7L83--urr7tO-cbwbxkb1pg_OiFEpa50QlnfSjr2V4FuUDa5tGRNy8CoMvgcTvDCsU1K5YBkLRp6T96e9t3P5vUJddIrVwTSZDGWtWvKWSaVGMSL04wnq5lLrDEHfzjGZ-V5zpo8p6IP-NwV9TEGfUsDht088q03g_47-sR0BFycAoNq7CLOuLh5d8nFGK7Uv8X94HgE8Z6Lm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150344929</pqid></control><display><type>article</type><title>Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation</title><source>Elsevier ScienceDirect Journals</source><creator>Kong, Lingtong ; Hu, Xianli ; Xia, Demeng ; Wu, Jianghong ; Zhao, Yangpeng ; Guo, Hua ; Zhang, Song ; Qin, Chun ; Wang, Yanjun ; Li, Lei ; Su, Zheng ; Zhu, Chen ; Xu, Shuogui</creator><creatorcontrib>Kong, Lingtong ; Hu, Xianli ; Xia, Demeng ; Wu, Jianghong ; Zhao, Yangpeng ; Guo, Hua ; Zhang, Song ; Qin, Chun ; Wang, Yanjun ; Li, Lei ; Su, Zheng ; Zhu, Chen ; Xu, Shuogui</creatorcontrib><description>Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.</description><identifier>ISSN: 0142-9612</identifier><identifier>ISSN: 1878-5905</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2024.123060</identifier><identifier>PMID: 39736219</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Bacterial biofilm infection ; Bacteriocin ; Engineered probiotics ; Innate immunomodulation ; Macrophage</subject><ispartof>Biomaterials, 2025-06, Vol.317, p.123060, Article 123060</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1689-47a7fca2944bbc22b163b97b3ed5187ec5500238d4f8d7eafd2a06434cfb00fa3</cites><orcidid>0000-0001-5926-4391 ; 0009-0001-9829-2376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961224005969$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39736219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Lingtong</creatorcontrib><creatorcontrib>Hu, Xianli</creatorcontrib><creatorcontrib>Xia, Demeng</creatorcontrib><creatorcontrib>Wu, Jianghong</creatorcontrib><creatorcontrib>Zhao, Yangpeng</creatorcontrib><creatorcontrib>Guo, Hua</creatorcontrib><creatorcontrib>Zhang, Song</creatorcontrib><creatorcontrib>Qin, Chun</creatorcontrib><creatorcontrib>Wang, Yanjun</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Su, Zheng</creatorcontrib><creatorcontrib>Zhu, Chen</creatorcontrib><creatorcontrib>Xu, Shuogui</creatorcontrib><title>Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.</description><subject>Bacterial biofilm infection</subject><subject>Bacteriocin</subject><subject>Engineered probiotics</subject><subject>Innate immunomodulation</subject><subject>Macrophage</subject><issn>0142-9612</issn><issn>1878-5905</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqNUctuFDEQtBCILIFfQBYnLrP4NS9uaBMCaKVEAs6WH23k1dgO45lIuefD06sNiCMnq93VXV1VhLzjbMsZ7z4ctjaWZBaYo5nqVjChtlxI1rFnZMOHfmjakbXPyYZxJZqx4-KMvKr1wLBmSrwkZ3LsZSf4uCEP30xeK725vLqfcKOnu_V7A_lXzAAzlnvjlmKNi9OEMGcqROpKsmapFK8IcUo05gBuiSVXehcNTbAYW6bosIE3BtyTHVCTPX5kJKExpTWXVPyKnDj3mrwIqATePL3n5Ofnyx-7L83--urr7tO-cbwbxkb1pg_OiFEpa50QlnfSjr2V4FuUDa5tGRNy8CoMvgcTvDCsU1K5YBkLRp6T96e9t3P5vUJddIrVwTSZDGWtWvKWSaVGMSL04wnq5lLrDEHfzjGZ-V5zpo8p6IP-NwV9TEGfUsDht088q03g_47-sR0BFycAoNq7CLOuLh5d8nFGK7Uv8X94HgE8Z6Lm</recordid><startdate>202506</startdate><enddate>202506</enddate><creator>Kong, Lingtong</creator><creator>Hu, Xianli</creator><creator>Xia, Demeng</creator><creator>Wu, Jianghong</creator><creator>Zhao, Yangpeng</creator><creator>Guo, Hua</creator><creator>Zhang, Song</creator><creator>Qin, Chun</creator><creator>Wang, Yanjun</creator><creator>Li, Lei</creator><creator>Su, Zheng</creator><creator>Zhu, Chen</creator><creator>Xu, Shuogui</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5926-4391</orcidid><orcidid>https://orcid.org/0009-0001-9829-2376</orcidid></search><sort><creationdate>202506</creationdate><title>Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation</title><author>Kong, Lingtong ; Hu, Xianli ; Xia, Demeng ; Wu, Jianghong ; Zhao, Yangpeng ; Guo, Hua ; Zhang, Song ; Qin, Chun ; Wang, Yanjun ; Li, Lei ; Su, Zheng ; Zhu, Chen ; Xu, Shuogui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1689-47a7fca2944bbc22b163b97b3ed5187ec5500238d4f8d7eafd2a06434cfb00fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Bacterial biofilm infection</topic><topic>Bacteriocin</topic><topic>Engineered probiotics</topic><topic>Innate immunomodulation</topic><topic>Macrophage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Lingtong</creatorcontrib><creatorcontrib>Hu, Xianli</creatorcontrib><creatorcontrib>Xia, Demeng</creatorcontrib><creatorcontrib>Wu, Jianghong</creatorcontrib><creatorcontrib>Zhao, Yangpeng</creatorcontrib><creatorcontrib>Guo, Hua</creatorcontrib><creatorcontrib>Zhang, Song</creatorcontrib><creatorcontrib>Qin, Chun</creatorcontrib><creatorcontrib>Wang, Yanjun</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Su, Zheng</creatorcontrib><creatorcontrib>Zhu, Chen</creatorcontrib><creatorcontrib>Xu, Shuogui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Lingtong</au><au>Hu, Xianli</au><au>Xia, Demeng</au><au>Wu, Jianghong</au><au>Zhao, Yangpeng</au><au>Guo, Hua</au><au>Zhang, Song</au><au>Qin, Chun</au><au>Wang, Yanjun</au><au>Li, Lei</au><au>Su, Zheng</au><au>Zhu, Chen</au><au>Xu, Shuogui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2025-06</date><risdate>2025</risdate><volume>317</volume><spage>123060</spage><pages>123060-</pages><artnum>123060</artnum><issn>0142-9612</issn><issn>1878-5905</issn><eissn>1878-5905</eissn><abstract>Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39736219</pmid><doi>10.1016/j.biomaterials.2024.123060</doi><orcidid>https://orcid.org/0000-0001-5926-4391</orcidid><orcidid>https://orcid.org/0009-0001-9829-2376</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2025-06, Vol.317, p.123060, Article 123060
issn 0142-9612
1878-5905
1878-5905
language eng
recordid cdi_proquest_miscellaneous_3150344929
source Elsevier ScienceDirect Journals
subjects Bacterial biofilm infection
Bacteriocin
Engineered probiotics
Innate immunomodulation
Macrophage
title Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Janus%20PEGylated%20CuS-engineered%20Lactobacillus%20casei%20combats%20biofilm%20infections%20via%20metabolic%20interference%20and%20innate%20immunomodulation&rft.jtitle=Biomaterials&rft.au=Kong,%20Lingtong&rft.date=2025-06&rft.volume=317&rft.spage=123060&rft.pages=123060-&rft.artnum=123060&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2024.123060&rft_dat=%3Cproquest_cross%3E3150344929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150344929&rft_id=info:pmid/39736219&rft_els_id=S0142961224005969&rfr_iscdi=true