Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application

The rGO-based 5% Ni-doped Co 3 O 4 /TiO 2 (GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite’s morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2025, Vol.32 (3), p.1308-1330
Hauptverfasser: Sonpir, Ramprasad, Dake, Dnyaneshwar, Raskar, Nita, Mane, Vijay, Dole, Babasaheb
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1330
container_issue 3
container_start_page 1308
container_title Environmental science and pollution research international
container_volume 32
creator Sonpir, Ramprasad
Dake, Dnyaneshwar
Raskar, Nita
Mane, Vijay
Dole, Babasaheb
description The rGO-based 5% Ni-doped Co 3 O 4 /TiO 2 (GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite’s morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.11% degradation within 40 min, while GPCT closely followed with a 96.6% efficiency. Its smart nanomaterial also excels as a n-butanol sensor, with GNCT showing a sensitivity of 91.51%, and GPCT registering 86.51%. This dual-functionality highlights its potential as an advanced material for environmental and sensing applications. Additionally, GNCT exhibited excellent stability across multiple cycles, underscoring its potential for gas sensing and environmental applications. The remarkable performance of GNCT is a result of the synergistic effects of its morphology (nanosheet), surface area (540.215 m 2 /g), band gap (1.93 eV), and photosensitivity (36.92%), which collectively make it an ideal candidate for the photocatalytic and gas sensing applications.
doi_str_mv 10.1007/s11356-024-35819-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3149543119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156682840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148w-29567c44887837e02122348dddb9ce72df964c195df70213002e2aa1b593d2423</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRUKt_wFXAjZtoXvPIUopWQexCXYc0ydTINBlzp1bBH290BMWFq3vhfOdwk1MUR5ScUkLqM6CUlxUmTGBeNlTizVaxRysqcC2k3P617xb7AE-EMCJZvVe83610GpAOFmn7ooNxFgUdoomrPoIfHKDYojSb44WGrN16bGOfl2nkc3F27-cMtTGh4F4H3LkX16H-MQ7R6EF3b-DhK3qpAYEL4MMS6b7vfJZ9DAfFTqs7cIffc1I8XF7cT6_wzXx2PT2_wYaKZoOZLKvaCNE0dcNrRxhljIvGWruQxtXMtrIShsrStnUWeX6cY1rTRSm5ZYLxSXEy5vYpPq8dDGrlwbiu08HFNShOhSwFp1Rm9PgP-hTXKeTrMlVWVcMaQTLFRsqkCJBcq_rk80e-KUrUZyFqLETlQtRXIWqTTXw0QYbD0qWf6H9cH1iTjdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156682840</pqid></control><display><type>article</type><title>Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application</title><source>Springer Nature - Complete Springer Journals</source><creator>Sonpir, Ramprasad ; Dake, Dnyaneshwar ; Raskar, Nita ; Mane, Vijay ; Dole, Babasaheb</creator><creatorcontrib>Sonpir, Ramprasad ; Dake, Dnyaneshwar ; Raskar, Nita ; Mane, Vijay ; Dole, Babasaheb</creatorcontrib><description>The rGO-based 5% Ni-doped Co 3 O 4 /TiO 2 (GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite’s morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.11% degradation within 40 min, while GPCT closely followed with a 96.6% efficiency. Its smart nanomaterial also excels as a n-butanol sensor, with GNCT showing a sensitivity of 91.51%, and GPCT registering 86.51%. This dual-functionality highlights its potential as an advanced material for environmental and sensing applications. Additionally, GNCT exhibited excellent stability across multiple cycles, underscoring its potential for gas sensing and environmental applications. The remarkable performance of GNCT is a result of the synergistic effects of its morphology (nanosheet), surface area (540.215 m 2 /g), band gap (1.93 eV), and photosensitivity (36.92%), which collectively make it an ideal candidate for the photocatalytic and gas sensing applications.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-024-35819-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Butanol ; Chemical composition ; Cobalt oxides ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Gas sensors ; Heterojunctions ; Morphology ; Nanocomposites ; Nanomaterials ; Nickel ; Optical properties ; P-n junctions ; Photocatalysis ; Photosensitivity ; Research Article ; Surface area ; Synergistic effect ; Titanium dioxide ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2025, Vol.32 (3), p.1308-1330</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148w-29567c44887837e02122348dddb9ce72df964c195df70213002e2aa1b593d2423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-024-35819-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-024-35819-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Sonpir, Ramprasad</creatorcontrib><creatorcontrib>Dake, Dnyaneshwar</creatorcontrib><creatorcontrib>Raskar, Nita</creatorcontrib><creatorcontrib>Mane, Vijay</creatorcontrib><creatorcontrib>Dole, Babasaheb</creatorcontrib><title>Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>The rGO-based 5% Ni-doped Co 3 O 4 /TiO 2 (GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite’s morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.11% degradation within 40 min, while GPCT closely followed with a 96.6% efficiency. Its smart nanomaterial also excels as a n-butanol sensor, with GNCT showing a sensitivity of 91.51%, and GPCT registering 86.51%. This dual-functionality highlights its potential as an advanced material for environmental and sensing applications. Additionally, GNCT exhibited excellent stability across multiple cycles, underscoring its potential for gas sensing and environmental applications. The remarkable performance of GNCT is a result of the synergistic effects of its morphology (nanosheet), surface area (540.215 m 2 /g), band gap (1.93 eV), and photosensitivity (36.92%), which collectively make it an ideal candidate for the photocatalytic and gas sensing applications.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Butanol</subject><subject>Chemical composition</subject><subject>Cobalt oxides</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Gas sensors</subject><subject>Heterojunctions</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nickel</subject><subject>Optical properties</subject><subject>P-n junctions</subject><subject>Photocatalysis</subject><subject>Photosensitivity</subject><subject>Research Article</subject><subject>Surface area</subject><subject>Synergistic effect</subject><subject>Titanium dioxide</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhQdRUKt_wFXAjZtoXvPIUopWQexCXYc0ydTINBlzp1bBH290BMWFq3vhfOdwk1MUR5ScUkLqM6CUlxUmTGBeNlTizVaxRysqcC2k3P617xb7AE-EMCJZvVe83610GpAOFmn7ooNxFgUdoomrPoIfHKDYojSb44WGrN16bGOfl2nkc3F27-cMtTGh4F4H3LkX16H-MQ7R6EF3b-DhK3qpAYEL4MMS6b7vfJZ9DAfFTqs7cIffc1I8XF7cT6_wzXx2PT2_wYaKZoOZLKvaCNE0dcNrRxhljIvGWruQxtXMtrIShsrStnUWeX6cY1rTRSm5ZYLxSXEy5vYpPq8dDGrlwbiu08HFNShOhSwFp1Rm9PgP-hTXKeTrMlVWVcMaQTLFRsqkCJBcq_rk80e-KUrUZyFqLETlQtRXIWqTTXw0QYbD0qWf6H9cH1iTjdY</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Sonpir, Ramprasad</creator><creator>Dake, Dnyaneshwar</creator><creator>Raskar, Nita</creator><creator>Mane, Vijay</creator><creator>Dole, Babasaheb</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2025</creationdate><title>Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application</title><author>Sonpir, Ramprasad ; Dake, Dnyaneshwar ; Raskar, Nita ; Mane, Vijay ; Dole, Babasaheb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148w-29567c44887837e02122348dddb9ce72df964c195df70213002e2aa1b593d2423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Butanol</topic><topic>Chemical composition</topic><topic>Cobalt oxides</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Gas sensors</topic><topic>Heterojunctions</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nickel</topic><topic>Optical properties</topic><topic>P-n junctions</topic><topic>Photocatalysis</topic><topic>Photosensitivity</topic><topic>Research Article</topic><topic>Surface area</topic><topic>Synergistic effect</topic><topic>Titanium dioxide</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonpir, Ramprasad</creatorcontrib><creatorcontrib>Dake, Dnyaneshwar</creatorcontrib><creatorcontrib>Raskar, Nita</creatorcontrib><creatorcontrib>Mane, Vijay</creatorcontrib><creatorcontrib>Dole, Babasaheb</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sonpir, Ramprasad</au><au>Dake, Dnyaneshwar</au><au>Raskar, Nita</au><au>Mane, Vijay</au><au>Dole, Babasaheb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2025</date><risdate>2025</risdate><volume>32</volume><issue>3</issue><spage>1308</spage><epage>1330</epage><pages>1308-1330</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The rGO-based 5% Ni-doped Co 3 O 4 /TiO 2 (GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite’s morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.11% degradation within 40 min, while GPCT closely followed with a 96.6% efficiency. Its smart nanomaterial also excels as a n-butanol sensor, with GNCT showing a sensitivity of 91.51%, and GPCT registering 86.51%. This dual-functionality highlights its potential as an advanced material for environmental and sensing applications. Additionally, GNCT exhibited excellent stability across multiple cycles, underscoring its potential for gas sensing and environmental applications. The remarkable performance of GNCT is a result of the synergistic effects of its morphology (nanosheet), surface area (540.215 m 2 /g), band gap (1.93 eV), and photosensitivity (36.92%), which collectively make it an ideal candidate for the photocatalytic and gas sensing applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-024-35819-w</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-7499
ispartof Environmental science and pollution research international, 2025, Vol.32 (3), p.1308-1330
issn 1614-7499
0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_3149543119
source Springer Nature - Complete Springer Journals
subjects Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Butanol
Chemical composition
Cobalt oxides
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Gas sensors
Heterojunctions
Morphology
Nanocomposites
Nanomaterials
Nickel
Optical properties
P-n junctions
Photocatalysis
Photosensitivity
Research Article
Surface area
Synergistic effect
Titanium dioxide
Waste Water Technology
Water Management
Water Pollution Control
title Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20and%20advanced%20nanocomposites%20of%20rGO-based%20Ni-doped%20Co3O4/TiO2%20for%20next-level%20photocatalysis%20and%20gas%20sensing%20application&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Sonpir,%20Ramprasad&rft.date=2025&rft.volume=32&rft.issue=3&rft.spage=1308&rft.epage=1330&rft.pages=1308-1330&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-024-35819-w&rft_dat=%3Cproquest_cross%3E3156682840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156682840&rft_id=info:pmid/&rfr_iscdi=true