Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application
The rGO-based 5% Ni-doped Co 3 O 4 /TiO 2 (GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite’s morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniq...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2025, Vol.32 (3), p.1308-1330 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1330 |
---|---|
container_issue | 3 |
container_start_page | 1308 |
container_title | Environmental science and pollution research international |
container_volume | 32 |
creator | Sonpir, Ramprasad Dake, Dnyaneshwar Raskar, Nita Mane, Vijay Dole, Babasaheb |
description | The rGO-based 5% Ni-doped Co
3
O
4
/TiO
2
(GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite’s morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.11% degradation within 40 min, while GPCT closely followed with a 96.6% efficiency. Its smart nanomaterial also excels as a n-butanol sensor, with GNCT showing a sensitivity of 91.51%, and GPCT registering 86.51%. This dual-functionality highlights its potential as an advanced material for environmental and sensing applications. Additionally, GNCT exhibited excellent stability across multiple cycles, underscoring its potential for gas sensing and environmental applications. The remarkable performance of GNCT is a result of the synergistic effects of its morphology (nanosheet), surface area (540.215 m
2
/g), band gap (1.93 eV), and photosensitivity (36.92%), which collectively make it an ideal candidate for the photocatalytic and gas sensing applications. |
doi_str_mv | 10.1007/s11356-024-35819-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3149543119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156682840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148w-29567c44887837e02122348dddb9ce72df964c195df70213002e2aa1b593d2423</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRUKt_wFXAjZtoXvPIUopWQexCXYc0ydTINBlzp1bBH290BMWFq3vhfOdwk1MUR5ScUkLqM6CUlxUmTGBeNlTizVaxRysqcC2k3P617xb7AE-EMCJZvVe83610GpAOFmn7ooNxFgUdoomrPoIfHKDYojSb44WGrN16bGOfl2nkc3F27-cMtTGh4F4H3LkX16H-MQ7R6EF3b-DhK3qpAYEL4MMS6b7vfJZ9DAfFTqs7cIffc1I8XF7cT6_wzXx2PT2_wYaKZoOZLKvaCNE0dcNrRxhljIvGWruQxtXMtrIShsrStnUWeX6cY1rTRSm5ZYLxSXEy5vYpPq8dDGrlwbiu08HFNShOhSwFp1Rm9PgP-hTXKeTrMlVWVcMaQTLFRsqkCJBcq_rk80e-KUrUZyFqLETlQtRXIWqTTXw0QYbD0qWf6H9cH1iTjdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156682840</pqid></control><display><type>article</type><title>Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application</title><source>Springer Nature - Complete Springer Journals</source><creator>Sonpir, Ramprasad ; Dake, Dnyaneshwar ; Raskar, Nita ; Mane, Vijay ; Dole, Babasaheb</creator><creatorcontrib>Sonpir, Ramprasad ; Dake, Dnyaneshwar ; Raskar, Nita ; Mane, Vijay ; Dole, Babasaheb</creatorcontrib><description>The rGO-based 5% Ni-doped Co
3
O
4
/TiO
2
(GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite’s morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.11% degradation within 40 min, while GPCT closely followed with a 96.6% efficiency. Its smart nanomaterial also excels as a n-butanol sensor, with GNCT showing a sensitivity of 91.51%, and GPCT registering 86.51%. This dual-functionality highlights its potential as an advanced material for environmental and sensing applications. Additionally, GNCT exhibited excellent stability across multiple cycles, underscoring its potential for gas sensing and environmental applications. The remarkable performance of GNCT is a result of the synergistic effects of its morphology (nanosheet), surface area (540.215 m
2
/g), band gap (1.93 eV), and photosensitivity (36.92%), which collectively make it an ideal candidate for the photocatalytic and gas sensing applications.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-024-35819-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Butanol ; Chemical composition ; Cobalt oxides ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Gas sensors ; Heterojunctions ; Morphology ; Nanocomposites ; Nanomaterials ; Nickel ; Optical properties ; P-n junctions ; Photocatalysis ; Photosensitivity ; Research Article ; Surface area ; Synergistic effect ; Titanium dioxide ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2025, Vol.32 (3), p.1308-1330</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148w-29567c44887837e02122348dddb9ce72df964c195df70213002e2aa1b593d2423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-024-35819-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-024-35819-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Sonpir, Ramprasad</creatorcontrib><creatorcontrib>Dake, Dnyaneshwar</creatorcontrib><creatorcontrib>Raskar, Nita</creatorcontrib><creatorcontrib>Mane, Vijay</creatorcontrib><creatorcontrib>Dole, Babasaheb</creatorcontrib><title>Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>The rGO-based 5% Ni-doped Co
3
O
4
/TiO
2
(GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite’s morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.11% degradation within 40 min, while GPCT closely followed with a 96.6% efficiency. Its smart nanomaterial also excels as a n-butanol sensor, with GNCT showing a sensitivity of 91.51%, and GPCT registering 86.51%. This dual-functionality highlights its potential as an advanced material for environmental and sensing applications. Additionally, GNCT exhibited excellent stability across multiple cycles, underscoring its potential for gas sensing and environmental applications. The remarkable performance of GNCT is a result of the synergistic effects of its morphology (nanosheet), surface area (540.215 m
2
/g), band gap (1.93 eV), and photosensitivity (36.92%), which collectively make it an ideal candidate for the photocatalytic and gas sensing applications.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Butanol</subject><subject>Chemical composition</subject><subject>Cobalt oxides</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Gas sensors</subject><subject>Heterojunctions</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nickel</subject><subject>Optical properties</subject><subject>P-n junctions</subject><subject>Photocatalysis</subject><subject>Photosensitivity</subject><subject>Research Article</subject><subject>Surface area</subject><subject>Synergistic effect</subject><subject>Titanium dioxide</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhQdRUKt_wFXAjZtoXvPIUopWQexCXYc0ydTINBlzp1bBH290BMWFq3vhfOdwk1MUR5ScUkLqM6CUlxUmTGBeNlTizVaxRysqcC2k3P617xb7AE-EMCJZvVe83610GpAOFmn7ooNxFgUdoomrPoIfHKDYojSb44WGrN16bGOfl2nkc3F27-cMtTGh4F4H3LkX16H-MQ7R6EF3b-DhK3qpAYEL4MMS6b7vfJZ9DAfFTqs7cIffc1I8XF7cT6_wzXx2PT2_wYaKZoOZLKvaCNE0dcNrRxhljIvGWruQxtXMtrIShsrStnUWeX6cY1rTRSm5ZYLxSXEy5vYpPq8dDGrlwbiu08HFNShOhSwFp1Rm9PgP-hTXKeTrMlVWVcMaQTLFRsqkCJBcq_rk80e-KUrUZyFqLETlQtRXIWqTTXw0QYbD0qWf6H9cH1iTjdY</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Sonpir, Ramprasad</creator><creator>Dake, Dnyaneshwar</creator><creator>Raskar, Nita</creator><creator>Mane, Vijay</creator><creator>Dole, Babasaheb</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2025</creationdate><title>Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application</title><author>Sonpir, Ramprasad ; Dake, Dnyaneshwar ; Raskar, Nita ; Mane, Vijay ; Dole, Babasaheb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148w-29567c44887837e02122348dddb9ce72df964c195df70213002e2aa1b593d2423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Butanol</topic><topic>Chemical composition</topic><topic>Cobalt oxides</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Gas sensors</topic><topic>Heterojunctions</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nickel</topic><topic>Optical properties</topic><topic>P-n junctions</topic><topic>Photocatalysis</topic><topic>Photosensitivity</topic><topic>Research Article</topic><topic>Surface area</topic><topic>Synergistic effect</topic><topic>Titanium dioxide</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonpir, Ramprasad</creatorcontrib><creatorcontrib>Dake, Dnyaneshwar</creatorcontrib><creatorcontrib>Raskar, Nita</creatorcontrib><creatorcontrib>Mane, Vijay</creatorcontrib><creatorcontrib>Dole, Babasaheb</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sonpir, Ramprasad</au><au>Dake, Dnyaneshwar</au><au>Raskar, Nita</au><au>Mane, Vijay</au><au>Dole, Babasaheb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2025</date><risdate>2025</risdate><volume>32</volume><issue>3</issue><spage>1308</spage><epage>1330</epage><pages>1308-1330</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The rGO-based 5% Ni-doped Co
3
O
4
/TiO
2
(GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite’s morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.11% degradation within 40 min, while GPCT closely followed with a 96.6% efficiency. Its smart nanomaterial also excels as a n-butanol sensor, with GNCT showing a sensitivity of 91.51%, and GPCT registering 86.51%. This dual-functionality highlights its potential as an advanced material for environmental and sensing applications. Additionally, GNCT exhibited excellent stability across multiple cycles, underscoring its potential for gas sensing and environmental applications. The remarkable performance of GNCT is a result of the synergistic effects of its morphology (nanosheet), surface area (540.215 m
2
/g), band gap (1.93 eV), and photosensitivity (36.92%), which collectively make it an ideal candidate for the photocatalytic and gas sensing applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-024-35819-w</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-7499 |
ispartof | Environmental science and pollution research international, 2025, Vol.32 (3), p.1308-1330 |
issn | 1614-7499 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_3149543119 |
source | Springer Nature - Complete Springer Journals |
subjects | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Butanol Chemical composition Cobalt oxides Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Gas sensors Heterojunctions Morphology Nanocomposites Nanomaterials Nickel Optical properties P-n junctions Photocatalysis Photosensitivity Research Article Surface area Synergistic effect Titanium dioxide Waste Water Technology Water Management Water Pollution Control |
title | Smart and advanced nanocomposites of rGO-based Ni-doped Co3O4/TiO2 for next-level photocatalysis and gas sensing application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20and%20advanced%20nanocomposites%20of%20rGO-based%20Ni-doped%20Co3O4/TiO2%20for%20next-level%20photocatalysis%20and%20gas%20sensing%20application&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Sonpir,%20Ramprasad&rft.date=2025&rft.volume=32&rft.issue=3&rft.spage=1308&rft.epage=1330&rft.pages=1308-1330&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-024-35819-w&rft_dat=%3Cproquest_cross%3E3156682840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156682840&rft_id=info:pmid/&rfr_iscdi=true |