Combining Group Contribution Method and Semisupervised Learning to Build Machine Learning Models for Predicting Hydroxyl Radical Rate Constants of Water Contaminants

Machine learning is an effective tool for predicting reaction rate constants for many organic compounds with the hydroxyl radical (HO•). Previously reported models have achieved relatively good performance, but due to scarce data (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2025-01, Vol.59 (1), p.857-868
Hauptverfasser: Liu, Zhao, Shang, Lanyu, Huang, Kuan, Yue, Zhenrui, Han, Alan Y., Wang, Dong, Zhang, Huichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning is an effective tool for predicting reaction rate constants for many organic compounds with the hydroxyl radical (HO•). Previously reported models have achieved relatively good performance, but due to scarce data (
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.4c11950