Imputation of Missing Data in Materials Science through Nearest Neighbors and Iterative Predictions
Missing data in tabular data sets is ubiquitous in statistical analysis, big data analysis, and machine learning studies. Many strategies have been proposed to impute missing data, but their reliability has not been stringently assessed in materials science. Here, we carried out a benchmark test for...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2024-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!