Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers

Piezoelectric micromachined ultrasound transducers (pMUTs), especially those using lead-free materials, are crucial next-generation microdevices for precise actuation and sensing, driving advancements in medical, industrial, and environmental applications. Bismuth ferrite (BiFeO ) is emerging as a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-12, p.e2414711
Hauptverfasser: Liu, Tong, Yang, Changhong, Si, Jingxiang, Sun, Wei, Su, Daojian, Li, Chenglong, Yuan, Xiufang, Huang, Shifeng, Cheng, Xin, Cheng, Zhenxiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2414711
container_title Advanced materials (Weinheim)
container_volume
creator Liu, Tong
Yang, Changhong
Si, Jingxiang
Sun, Wei
Su, Daojian
Li, Chenglong
Yuan, Xiufang
Huang, Shifeng
Cheng, Xin
Cheng, Zhenxiang
description Piezoelectric micromachined ultrasound transducers (pMUTs), especially those using lead-free materials, are crucial next-generation microdevices for precise actuation and sensing, driving advancements in medical, industrial, and environmental applications. Bismuth ferrite (BiFeO ) is emerging as a promising lead-free piezoelectric material to replace Pb(Zr,Ti)O in pMUTs. Despite its potential, the integration of BiFeO thin films into pMUTs has been hindered by poling issues. Here, a BiFeO heterostructure compositionally downgraded with Gd doping is developed to introduce compressive strain, resulting in strong self-poling. Utilizing a large-area self-poled thin film over an entire 6-inch wafer, a pMUT with a 6 × 6 array at the device level is designed and evaluated. At a resonant frequency of 21 kHz, the dynamic vibration displacement can reach 24.0 nm. At 500 Hz, far below the resonant frequency of 21 kHz, the pMUT also displays sensitive converse piezoelectric response, even at a high temperature of 200 °C. This work represents a significant breakthrough in lead-free BiFeO thin film for practical sensing applications, paving the way for the transformation of macro-transducers into next-generation functional microdevices.
doi_str_mv 10.1002/adma.202414711
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3149538230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149538230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c951-ba44d7d16fd9403202fe288e1c1b1998d8756a3fb7a1d4f700d6e6e6efb9b70b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlavHiVHL1szm-xHjlqsChULricPSzaZ0Mh-1GT3oL_eLa1lDgPDMy-8DyHXwObAWHynTKPmMYsFiAzghEwhiSESTCanZMokTyKZinxCLkL4YozJlKXnZMJlFseQwpR8vmNto3VXo6EPLjRDv6FL9N71SIuNa-nS1Q19ddp3jdLjYeRs5-na4W-HNereO00_6t6r0A2toYVXbTCDRh8uyZlVdcCrw56RYvlYLJ6j1dvTy-J-FWmZQFQpIUxmILVGCsbHLhbjPEfQUIGUucmzJFXcVpkCI2zGmElxN7aSVcYqPiO3-9it774HDH3ZuKCxrlWL3RBKDkImPI85G9H5Hh3rhODRllvvGuV_SmDlzme581kefY4PN4fsoWrQHPF_gfwPFaZxww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149538230</pqid></control><display><type>article</type><title>Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers</title><source>Wiley Online Library All Journals</source><creator>Liu, Tong ; Yang, Changhong ; Si, Jingxiang ; Sun, Wei ; Su, Daojian ; Li, Chenglong ; Yuan, Xiufang ; Huang, Shifeng ; Cheng, Xin ; Cheng, Zhenxiang</creator><creatorcontrib>Liu, Tong ; Yang, Changhong ; Si, Jingxiang ; Sun, Wei ; Su, Daojian ; Li, Chenglong ; Yuan, Xiufang ; Huang, Shifeng ; Cheng, Xin ; Cheng, Zhenxiang</creatorcontrib><description>Piezoelectric micromachined ultrasound transducers (pMUTs), especially those using lead-free materials, are crucial next-generation microdevices for precise actuation and sensing, driving advancements in medical, industrial, and environmental applications. Bismuth ferrite (BiFeO ) is emerging as a promising lead-free piezoelectric material to replace Pb(Zr,Ti)O in pMUTs. Despite its potential, the integration of BiFeO thin films into pMUTs has been hindered by poling issues. Here, a BiFeO heterostructure compositionally downgraded with Gd doping is developed to introduce compressive strain, resulting in strong self-poling. Utilizing a large-area self-poled thin film over an entire 6-inch wafer, a pMUT with a 6 × 6 array at the device level is designed and evaluated. At a resonant frequency of 21 kHz, the dynamic vibration displacement can reach 24.0 nm. At 500 Hz, far below the resonant frequency of 21 kHz, the pMUT also displays sensitive converse piezoelectric response, even at a high temperature of 200 °C. This work represents a significant breakthrough in lead-free BiFeO thin film for practical sensing applications, paving the way for the transformation of macro-transducers into next-generation functional microdevices.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202414711</identifier><identifier>PMID: 39722161</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2024-12, p.e2414711</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c951-ba44d7d16fd9403202fe288e1c1b1998d8756a3fb7a1d4f700d6e6e6efb9b70b3</cites><orcidid>0000-0001-5499-7107 ; 0000-0003-4847-2907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39722161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Yang, Changhong</creatorcontrib><creatorcontrib>Si, Jingxiang</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Su, Daojian</creatorcontrib><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Yuan, Xiufang</creatorcontrib><creatorcontrib>Huang, Shifeng</creatorcontrib><creatorcontrib>Cheng, Xin</creatorcontrib><creatorcontrib>Cheng, Zhenxiang</creatorcontrib><title>Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Piezoelectric micromachined ultrasound transducers (pMUTs), especially those using lead-free materials, are crucial next-generation microdevices for precise actuation and sensing, driving advancements in medical, industrial, and environmental applications. Bismuth ferrite (BiFeO ) is emerging as a promising lead-free piezoelectric material to replace Pb(Zr,Ti)O in pMUTs. Despite its potential, the integration of BiFeO thin films into pMUTs has been hindered by poling issues. Here, a BiFeO heterostructure compositionally downgraded with Gd doping is developed to introduce compressive strain, resulting in strong self-poling. Utilizing a large-area self-poled thin film over an entire 6-inch wafer, a pMUT with a 6 × 6 array at the device level is designed and evaluated. At a resonant frequency of 21 kHz, the dynamic vibration displacement can reach 24.0 nm. At 500 Hz, far below the resonant frequency of 21 kHz, the pMUT also displays sensitive converse piezoelectric response, even at a high temperature of 200 °C. This work represents a significant breakthrough in lead-free BiFeO thin film for practical sensing applications, paving the way for the transformation of macro-transducers into next-generation functional microdevices.</description><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMotlavHiVHL1szm-xHjlqsChULricPSzaZ0Mh-1GT3oL_eLa1lDgPDMy-8DyHXwObAWHynTKPmMYsFiAzghEwhiSESTCanZMokTyKZinxCLkL4YozJlKXnZMJlFseQwpR8vmNto3VXo6EPLjRDv6FL9N71SIuNa-nS1Q19ddp3jdLjYeRs5-na4W-HNereO00_6t6r0A2toYVXbTCDRh8uyZlVdcCrw56RYvlYLJ6j1dvTy-J-FWmZQFQpIUxmILVGCsbHLhbjPEfQUIGUucmzJFXcVpkCI2zGmElxN7aSVcYqPiO3-9it774HDH3ZuKCxrlWL3RBKDkImPI85G9H5Hh3rhODRllvvGuV_SmDlzme581kefY4PN4fsoWrQHPF_gfwPFaZxww</recordid><startdate>20241225</startdate><enddate>20241225</enddate><creator>Liu, Tong</creator><creator>Yang, Changhong</creator><creator>Si, Jingxiang</creator><creator>Sun, Wei</creator><creator>Su, Daojian</creator><creator>Li, Chenglong</creator><creator>Yuan, Xiufang</creator><creator>Huang, Shifeng</creator><creator>Cheng, Xin</creator><creator>Cheng, Zhenxiang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5499-7107</orcidid><orcidid>https://orcid.org/0000-0003-4847-2907</orcidid></search><sort><creationdate>20241225</creationdate><title>Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers</title><author>Liu, Tong ; Yang, Changhong ; Si, Jingxiang ; Sun, Wei ; Su, Daojian ; Li, Chenglong ; Yuan, Xiufang ; Huang, Shifeng ; Cheng, Xin ; Cheng, Zhenxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c951-ba44d7d16fd9403202fe288e1c1b1998d8756a3fb7a1d4f700d6e6e6efb9b70b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Yang, Changhong</creatorcontrib><creatorcontrib>Si, Jingxiang</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Su, Daojian</creatorcontrib><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Yuan, Xiufang</creatorcontrib><creatorcontrib>Huang, Shifeng</creatorcontrib><creatorcontrib>Cheng, Xin</creatorcontrib><creatorcontrib>Cheng, Zhenxiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tong</au><au>Yang, Changhong</au><au>Si, Jingxiang</au><au>Sun, Wei</au><au>Su, Daojian</au><au>Li, Chenglong</au><au>Yuan, Xiufang</au><au>Huang, Shifeng</au><au>Cheng, Xin</au><au>Cheng, Zhenxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-12-25</date><risdate>2024</risdate><spage>e2414711</spage><pages>e2414711-</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Piezoelectric micromachined ultrasound transducers (pMUTs), especially those using lead-free materials, are crucial next-generation microdevices for precise actuation and sensing, driving advancements in medical, industrial, and environmental applications. Bismuth ferrite (BiFeO ) is emerging as a promising lead-free piezoelectric material to replace Pb(Zr,Ti)O in pMUTs. Despite its potential, the integration of BiFeO thin films into pMUTs has been hindered by poling issues. Here, a BiFeO heterostructure compositionally downgraded with Gd doping is developed to introduce compressive strain, resulting in strong self-poling. Utilizing a large-area self-poled thin film over an entire 6-inch wafer, a pMUT with a 6 × 6 array at the device level is designed and evaluated. At a resonant frequency of 21 kHz, the dynamic vibration displacement can reach 24.0 nm. At 500 Hz, far below the resonant frequency of 21 kHz, the pMUT also displays sensitive converse piezoelectric response, even at a high temperature of 200 °C. This work represents a significant breakthrough in lead-free BiFeO thin film for practical sensing applications, paving the way for the transformation of macro-transducers into next-generation functional microdevices.</abstract><cop>Germany</cop><pmid>39722161</pmid><doi>10.1002/adma.202414711</doi><orcidid>https://orcid.org/0000-0001-5499-7107</orcidid><orcidid>https://orcid.org/0000-0003-4847-2907</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-12, p.e2414711
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3149538230
source Wiley Online Library All Journals
title Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Poled%20Bismuth%20Ferrite%20Thin%20Film%20Micromachined%20for%20Piezoelectric%20Ultrasound%20Transducers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Tong&rft.date=2024-12-25&rft.spage=e2414711&rft.pages=e2414711-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202414711&rft_dat=%3Cproquest_cross%3E3149538230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149538230&rft_id=info:pmid/39722161&rfr_iscdi=true