α7-Nicotinic Acetylcholine Receptor Activation Modulates BV2 Microglial Plasticity via miR-21/TNF-α/NFκB in Oxygen–Glucose Deprivation/Reoxygenation

Elevated inflammatory reactions are a significant component in cerebral ischemia–reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular neuroscience 2024-12, Vol.75 (1), p.2, Article 2
Hauptverfasser: Hasan, Mohammad Yusuf, Roslan, Azim Haikal Md, Azmi, Norazrina, Ibrahim, Norlinah Mohamed, Arulsamy, Alina, Lee, Vanessa Lin Lin, Siran, Rosfaiizah, Vidyadaran, Sharmili, Chua, Eng Wee, Mahadi, Mohd Kaisan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 2
container_title Journal of molecular neuroscience
container_volume 75
creator Hasan, Mohammad Yusuf
Roslan, Azim Haikal Md
Azmi, Norazrina
Ibrahim, Norlinah Mohamed
Arulsamy, Alina
Lee, Vanessa Lin Lin
Siran, Rosfaiizah
Vidyadaran, Sharmili
Chua, Eng Wee
Mahadi, Mohd Kaisan
description Elevated inflammatory reactions are a significant component in cerebral ischemia–reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. This study employed qRT-PCR, protein assays, NanoString analysis, and bioinformatics to examine the effects of PNU282987 treatment (α7nAChR agonist) on BV2 microglial functional differentiation in oxygen–glucose deprivation/reoxygenation (OGDR) condition. OGDR significantly increased the gene expression of pro-inflammatory markers such as TNF-α, IL-6, and IL1β, while α7nAChR agonists reduced these markers. The anti-inflammatory gene marker IL-10 was upregulated by α7nAChR agonist treatment. Downstream pathway marker analysis showed that both gene and protein expression of NFκB was associated with anti-inflammatory effects. Blocking microRNA-21 with antagomir reversed the anti-inflammatory effects. NanoString analysis revealed that microRNA-21 inhibition significantly affected inflammation-related genes, including AL1RAP , TLR9 , FLT1 , PTGIR , NFκB , TREM2 , TNF , SMAD7 , FOS , CCL5 , IFIT1 , CFB , CXCL10 , IFI44 , DDIT3 , IRF7 , OASL1 , IL1A , IFIT2 , C3 , CD40 , STAT2 , IFIT3 , IL1RN , OAS1A , CSF1 , CCL4 , CCL2 , CCL3 , BCL2L1 , and ITGB2 . Enrichment analysis of upregulated genes identified Gene Ontology Biological Processes related to cytokine responses and TNF-associated pathways. This study highlights α7nAChR activation as a key regulator of anti-inflammatory responses in BV2 microglia under OGDR conditions, with micro-RNA21 identified as a crucial mediator of receptor-driven neuroprotection via the TNF-α/NF κ B signalling pathway.
doi_str_mv 10.1007/s12031-024-02300-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3148840357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148840357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-7bee978bde34d1325bc89a19c7b215098a2293c4effaeb7aa0889734644baf8b3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxlcIREvhBTggS1y4uPG_XdvHtpAWqU1RVLiuvM5scOWs07W3IjfegROP0SsPkYfgSTBJShEHDpY9nt989sxXFC8pOaSEyFGkjHCKCRN5cUKwflTs07LUmNKqevzXea94FuM1IYwKqp4We1xLqiSt9ovv6zuJJ86G5Dpn0ZGFtPL2c_CuAzQFC8sU-nyd3K1JLnToIswGbxJEdPyJoQtn-zD3znj0wZuYnHVphW6dQQs3xYyOriZjvL4bTcbrH8fIdejyy2oO3c-v3079YEME9BaW_U57NIWwSW-i58WT1vgIL3b7QfFx_O7q5AyfX56-Pzk6x5aVVcKyAdBSNTPgYkY5KxurtKHayobRkmhlGNPcCmhbA400hiilJReVEI1pVcMPijdb3WUfbgaIqV64aMF700EYYs2pUEoQXsqMvv4HvQ5D3-XfbShdCSnLTLEtlUcTYw9tnTtcmH5VU1L_Nq7eGldn4-qNcbXORa920kOzgNmfknunMsC3QMypbg79w9v_kf0FKuWnjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148964775</pqid></control><display><type>article</type><title>α7-Nicotinic Acetylcholine Receptor Activation Modulates BV2 Microglial Plasticity via miR-21/TNF-α/NFκB in Oxygen–Glucose Deprivation/Reoxygenation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Hasan, Mohammad Yusuf ; Roslan, Azim Haikal Md ; Azmi, Norazrina ; Ibrahim, Norlinah Mohamed ; Arulsamy, Alina ; Lee, Vanessa Lin Lin ; Siran, Rosfaiizah ; Vidyadaran, Sharmili ; Chua, Eng Wee ; Mahadi, Mohd Kaisan</creator><creatorcontrib>Hasan, Mohammad Yusuf ; Roslan, Azim Haikal Md ; Azmi, Norazrina ; Ibrahim, Norlinah Mohamed ; Arulsamy, Alina ; Lee, Vanessa Lin Lin ; Siran, Rosfaiizah ; Vidyadaran, Sharmili ; Chua, Eng Wee ; Mahadi, Mohd Kaisan</creatorcontrib><description>Elevated inflammatory reactions are a significant component in cerebral ischemia–reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. This study employed qRT-PCR, protein assays, NanoString analysis, and bioinformatics to examine the effects of PNU282987 treatment (α7nAChR agonist) on BV2 microglial functional differentiation in oxygen–glucose deprivation/reoxygenation (OGDR) condition. OGDR significantly increased the gene expression of pro-inflammatory markers such as TNF-α, IL-6, and IL1β, while α7nAChR agonists reduced these markers. The anti-inflammatory gene marker IL-10 was upregulated by α7nAChR agonist treatment. Downstream pathway marker analysis showed that both gene and protein expression of NFκB was associated with anti-inflammatory effects. Blocking microRNA-21 with antagomir reversed the anti-inflammatory effects. NanoString analysis revealed that microRNA-21 inhibition significantly affected inflammation-related genes, including AL1RAP , TLR9 , FLT1 , PTGIR , NFκB , TREM2 , TNF , SMAD7 , FOS , CCL5 , IFIT1 , CFB , CXCL10 , IFI44 , DDIT3 , IRF7 , OASL1 , IL1A , IFIT2 , C3 , CD40 , STAT2 , IFIT3 , IL1RN , OAS1A , CSF1 , CCL4 , CCL2 , CCL3 , BCL2L1 , and ITGB2 . Enrichment analysis of upregulated genes identified Gene Ontology Biological Processes related to cytokine responses and TNF-associated pathways. This study highlights α7nAChR activation as a key regulator of anti-inflammatory responses in BV2 microglia under OGDR conditions, with micro-RNA21 identified as a crucial mediator of receptor-driven neuroprotection via the TNF-α/NF κ B signalling pathway.</description><identifier>ISSN: 1559-1166</identifier><identifier>ISSN: 0895-8696</identifier><identifier>EISSN: 1559-1166</identifier><identifier>DOI: 10.1007/s12031-024-02300-9</identifier><identifier>PMID: 39718716</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetylcholine receptors (nicotinic) ; Agonists ; alpha7 Nicotinic Acetylcholine Receptor - genetics ; alpha7 Nicotinic Acetylcholine Receptor - metabolism ; Animals ; Benzamides - pharmacology ; Bioinformatics ; Biological activity ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Bridged Bicyclo Compounds - pharmacology ; CD40 antigen ; Cell Biology ; Cell Hypoxia ; Cell Line ; Cerebrum ; CXCL10 protein ; Deprivation ; Gene expression ; Genes ; Glucose ; Glucose - metabolism ; Inflammation ; Interferon regulatory factor 7 ; Ischemia ; Mice ; Microglia ; Microglia - drug effects ; Microglia - metabolism ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Monocyte chemoattractant protein 1 ; Neurochemistry ; Neurology ; Neuroprotection ; Neurosciences ; NF-kappa B - metabolism ; NF-κB protein ; Nicotinic Agonists - pharmacology ; Oxygen ; Oxygen - metabolism ; Proteins ; Proteomics ; Receptor mechanisms ; Receptors ; Reperfusion ; Ribonucleic acid ; RNA ; Signal Transduction ; Smad7 protein ; Stat2 protein ; TLR9 protein ; Toll-like receptors ; Transcription activation ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - metabolism ; Tumor Necrosis Factor-alpha - pharmacology ; Tumor necrosis factor-α</subject><ispartof>Journal of molecular neuroscience, 2024-12, Vol.75 (1), p.2, Article 2</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. Mar 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-7bee978bde34d1325bc89a19c7b215098a2293c4effaeb7aa0889734644baf8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12031-024-02300-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12031-024-02300-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39718716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasan, Mohammad Yusuf</creatorcontrib><creatorcontrib>Roslan, Azim Haikal Md</creatorcontrib><creatorcontrib>Azmi, Norazrina</creatorcontrib><creatorcontrib>Ibrahim, Norlinah Mohamed</creatorcontrib><creatorcontrib>Arulsamy, Alina</creatorcontrib><creatorcontrib>Lee, Vanessa Lin Lin</creatorcontrib><creatorcontrib>Siran, Rosfaiizah</creatorcontrib><creatorcontrib>Vidyadaran, Sharmili</creatorcontrib><creatorcontrib>Chua, Eng Wee</creatorcontrib><creatorcontrib>Mahadi, Mohd Kaisan</creatorcontrib><title>α7-Nicotinic Acetylcholine Receptor Activation Modulates BV2 Microglial Plasticity via miR-21/TNF-α/NFκB in Oxygen–Glucose Deprivation/Reoxygenation</title><title>Journal of molecular neuroscience</title><addtitle>J Mol Neurosci</addtitle><addtitle>J Mol Neurosci</addtitle><description>Elevated inflammatory reactions are a significant component in cerebral ischemia–reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. This study employed qRT-PCR, protein assays, NanoString analysis, and bioinformatics to examine the effects of PNU282987 treatment (α7nAChR agonist) on BV2 microglial functional differentiation in oxygen–glucose deprivation/reoxygenation (OGDR) condition. OGDR significantly increased the gene expression of pro-inflammatory markers such as TNF-α, IL-6, and IL1β, while α7nAChR agonists reduced these markers. The anti-inflammatory gene marker IL-10 was upregulated by α7nAChR agonist treatment. Downstream pathway marker analysis showed that both gene and protein expression of NFκB was associated with anti-inflammatory effects. Blocking microRNA-21 with antagomir reversed the anti-inflammatory effects. NanoString analysis revealed that microRNA-21 inhibition significantly affected inflammation-related genes, including AL1RAP , TLR9 , FLT1 , PTGIR , NFκB , TREM2 , TNF , SMAD7 , FOS , CCL5 , IFIT1 , CFB , CXCL10 , IFI44 , DDIT3 , IRF7 , OASL1 , IL1A , IFIT2 , C3 , CD40 , STAT2 , IFIT3 , IL1RN , OAS1A , CSF1 , CCL4 , CCL2 , CCL3 , BCL2L1 , and ITGB2 . Enrichment analysis of upregulated genes identified Gene Ontology Biological Processes related to cytokine responses and TNF-associated pathways. This study highlights α7nAChR activation as a key regulator of anti-inflammatory responses in BV2 microglia under OGDR conditions, with micro-RNA21 identified as a crucial mediator of receptor-driven neuroprotection via the TNF-α/NF κ B signalling pathway.</description><subject>Acetylcholine receptors (nicotinic)</subject><subject>Agonists</subject><subject>alpha7 Nicotinic Acetylcholine Receptor - genetics</subject><subject>alpha7 Nicotinic Acetylcholine Receptor - metabolism</subject><subject>Animals</subject><subject>Benzamides - pharmacology</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bridged Bicyclo Compounds - pharmacology</subject><subject>CD40 antigen</subject><subject>Cell Biology</subject><subject>Cell Hypoxia</subject><subject>Cell Line</subject><subject>Cerebrum</subject><subject>CXCL10 protein</subject><subject>Deprivation</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Inflammation</subject><subject>Interferon regulatory factor 7</subject><subject>Ischemia</subject><subject>Mice</subject><subject>Microglia</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neuroprotection</subject><subject>Neurosciences</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Nicotinic Agonists - pharmacology</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Reperfusion</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal Transduction</subject><subject>Smad7 protein</subject><subject>Stat2 protein</subject><subject>TLR9 protein</subject><subject>Toll-like receptors</subject><subject>Transcription activation</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><subject>Tumor necrosis factor-α</subject><issn>1559-1166</issn><issn>0895-8696</issn><issn>1559-1166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9uEzEQxlcIREvhBTggS1y4uPG_XdvHtpAWqU1RVLiuvM5scOWs07W3IjfegROP0SsPkYfgSTBJShEHDpY9nt989sxXFC8pOaSEyFGkjHCKCRN5cUKwflTs07LUmNKqevzXea94FuM1IYwKqp4We1xLqiSt9ovv6zuJJ86G5Dpn0ZGFtPL2c_CuAzQFC8sU-nyd3K1JLnToIswGbxJEdPyJoQtn-zD3znj0wZuYnHVphW6dQQs3xYyOriZjvL4bTcbrH8fIdejyy2oO3c-v3079YEME9BaW_U57NIWwSW-i58WT1vgIL3b7QfFx_O7q5AyfX56-Pzk6x5aVVcKyAdBSNTPgYkY5KxurtKHayobRkmhlGNPcCmhbA400hiilJReVEI1pVcMPijdb3WUfbgaIqV64aMF700EYYs2pUEoQXsqMvv4HvQ5D3-XfbShdCSnLTLEtlUcTYw9tnTtcmH5VU1L_Nq7eGldn4-qNcbXORa920kOzgNmfknunMsC3QMypbg79w9v_kf0FKuWnjw</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Hasan, Mohammad Yusuf</creator><creator>Roslan, Azim Haikal Md</creator><creator>Azmi, Norazrina</creator><creator>Ibrahim, Norlinah Mohamed</creator><creator>Arulsamy, Alina</creator><creator>Lee, Vanessa Lin Lin</creator><creator>Siran, Rosfaiizah</creator><creator>Vidyadaran, Sharmili</creator><creator>Chua, Eng Wee</creator><creator>Mahadi, Mohd Kaisan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20241224</creationdate><title>α7-Nicotinic Acetylcholine Receptor Activation Modulates BV2 Microglial Plasticity via miR-21/TNF-α/NFκB in Oxygen–Glucose Deprivation/Reoxygenation</title><author>Hasan, Mohammad Yusuf ; Roslan, Azim Haikal Md ; Azmi, Norazrina ; Ibrahim, Norlinah Mohamed ; Arulsamy, Alina ; Lee, Vanessa Lin Lin ; Siran, Rosfaiizah ; Vidyadaran, Sharmili ; Chua, Eng Wee ; Mahadi, Mohd Kaisan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-7bee978bde34d1325bc89a19c7b215098a2293c4effaeb7aa0889734644baf8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetylcholine receptors (nicotinic)</topic><topic>Agonists</topic><topic>alpha7 Nicotinic Acetylcholine Receptor - genetics</topic><topic>alpha7 Nicotinic Acetylcholine Receptor - metabolism</topic><topic>Animals</topic><topic>Benzamides - pharmacology</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bridged Bicyclo Compounds - pharmacology</topic><topic>CD40 antigen</topic><topic>Cell Biology</topic><topic>Cell Hypoxia</topic><topic>Cell Line</topic><topic>Cerebrum</topic><topic>CXCL10 protein</topic><topic>Deprivation</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Inflammation</topic><topic>Interferon regulatory factor 7</topic><topic>Ischemia</topic><topic>Mice</topic><topic>Microglia</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neuroprotection</topic><topic>Neurosciences</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Nicotinic Agonists - pharmacology</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Reperfusion</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal Transduction</topic><topic>Smad7 protein</topic><topic>Stat2 protein</topic><topic>TLR9 protein</topic><topic>Toll-like receptors</topic><topic>Transcription activation</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Mohammad Yusuf</creatorcontrib><creatorcontrib>Roslan, Azim Haikal Md</creatorcontrib><creatorcontrib>Azmi, Norazrina</creatorcontrib><creatorcontrib>Ibrahim, Norlinah Mohamed</creatorcontrib><creatorcontrib>Arulsamy, Alina</creatorcontrib><creatorcontrib>Lee, Vanessa Lin Lin</creatorcontrib><creatorcontrib>Siran, Rosfaiizah</creatorcontrib><creatorcontrib>Vidyadaran, Sharmili</creatorcontrib><creatorcontrib>Chua, Eng Wee</creatorcontrib><creatorcontrib>Mahadi, Mohd Kaisan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, Mohammad Yusuf</au><au>Roslan, Azim Haikal Md</au><au>Azmi, Norazrina</au><au>Ibrahim, Norlinah Mohamed</au><au>Arulsamy, Alina</au><au>Lee, Vanessa Lin Lin</au><au>Siran, Rosfaiizah</au><au>Vidyadaran, Sharmili</au><au>Chua, Eng Wee</au><au>Mahadi, Mohd Kaisan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>α7-Nicotinic Acetylcholine Receptor Activation Modulates BV2 Microglial Plasticity via miR-21/TNF-α/NFκB in Oxygen–Glucose Deprivation/Reoxygenation</atitle><jtitle>Journal of molecular neuroscience</jtitle><stitle>J Mol Neurosci</stitle><addtitle>J Mol Neurosci</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>75</volume><issue>1</issue><spage>2</spage><pages>2-</pages><artnum>2</artnum><issn>1559-1166</issn><issn>0895-8696</issn><eissn>1559-1166</eissn><abstract>Elevated inflammatory reactions are a significant component in cerebral ischemia–reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. This study employed qRT-PCR, protein assays, NanoString analysis, and bioinformatics to examine the effects of PNU282987 treatment (α7nAChR agonist) on BV2 microglial functional differentiation in oxygen–glucose deprivation/reoxygenation (OGDR) condition. OGDR significantly increased the gene expression of pro-inflammatory markers such as TNF-α, IL-6, and IL1β, while α7nAChR agonists reduced these markers. The anti-inflammatory gene marker IL-10 was upregulated by α7nAChR agonist treatment. Downstream pathway marker analysis showed that both gene and protein expression of NFκB was associated with anti-inflammatory effects. Blocking microRNA-21 with antagomir reversed the anti-inflammatory effects. NanoString analysis revealed that microRNA-21 inhibition significantly affected inflammation-related genes, including AL1RAP , TLR9 , FLT1 , PTGIR , NFκB , TREM2 , TNF , SMAD7 , FOS , CCL5 , IFIT1 , CFB , CXCL10 , IFI44 , DDIT3 , IRF7 , OASL1 , IL1A , IFIT2 , C3 , CD40 , STAT2 , IFIT3 , IL1RN , OAS1A , CSF1 , CCL4 , CCL2 , CCL3 , BCL2L1 , and ITGB2 . Enrichment analysis of upregulated genes identified Gene Ontology Biological Processes related to cytokine responses and TNF-associated pathways. This study highlights α7nAChR activation as a key regulator of anti-inflammatory responses in BV2 microglia under OGDR conditions, with micro-RNA21 identified as a crucial mediator of receptor-driven neuroprotection via the TNF-α/NF κ B signalling pathway.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39718716</pmid><doi>10.1007/s12031-024-02300-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 1559-1166
ispartof Journal of molecular neuroscience, 2024-12, Vol.75 (1), p.2, Article 2
issn 1559-1166
0895-8696
1559-1166
language eng
recordid cdi_proquest_miscellaneous_3148840357
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Acetylcholine receptors (nicotinic)
Agonists
alpha7 Nicotinic Acetylcholine Receptor - genetics
alpha7 Nicotinic Acetylcholine Receptor - metabolism
Animals
Benzamides - pharmacology
Bioinformatics
Biological activity
Biomarkers
Biomedical and Life Sciences
Biomedicine
Bridged Bicyclo Compounds - pharmacology
CD40 antigen
Cell Biology
Cell Hypoxia
Cell Line
Cerebrum
CXCL10 protein
Deprivation
Gene expression
Genes
Glucose
Glucose - metabolism
Inflammation
Interferon regulatory factor 7
Ischemia
Mice
Microglia
Microglia - drug effects
Microglia - metabolism
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Monocyte chemoattractant protein 1
Neurochemistry
Neurology
Neuroprotection
Neurosciences
NF-kappa B - metabolism
NF-κB protein
Nicotinic Agonists - pharmacology
Oxygen
Oxygen - metabolism
Proteins
Proteomics
Receptor mechanisms
Receptors
Reperfusion
Ribonucleic acid
RNA
Signal Transduction
Smad7 protein
Stat2 protein
TLR9 protein
Toll-like receptors
Transcription activation
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - metabolism
Tumor Necrosis Factor-alpha - pharmacology
Tumor necrosis factor-α
title α7-Nicotinic Acetylcholine Receptor Activation Modulates BV2 Microglial Plasticity via miR-21/TNF-α/NFκB in Oxygen–Glucose Deprivation/Reoxygenation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B17-Nicotinic%20Acetylcholine%20Receptor%20Activation%20Modulates%20BV2%20Microglial%20Plasticity%20via%20miR-21/TNF-%CE%B1/NF%CE%BAB%20in%20Oxygen%E2%80%93Glucose%20Deprivation/Reoxygenation&rft.jtitle=Journal%20of%20molecular%20neuroscience&rft.au=Hasan,%20Mohammad%20Yusuf&rft.date=2024-12-24&rft.volume=75&rft.issue=1&rft.spage=2&rft.pages=2-&rft.artnum=2&rft.issn=1559-1166&rft.eissn=1559-1166&rft_id=info:doi/10.1007/s12031-024-02300-9&rft_dat=%3Cproquest_cross%3E3148840357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148964775&rft_id=info:pmid/39718716&rfr_iscdi=true