Unconventional Interconnected High-Entropy Alloy Nanodendrites for Remarkably Efficient C-C Bond Cleavage toward Complete Ethanol Oxidation

Developing ethanol oxidation electrocatalysts with high catalytic activity, durability, and resistance to CO poisoning remains a major challenge. High-entropy alloys (HEAs) with unique physical and chemical properties have garnered substantial attention. Herein, a class of HEA nanodendrites are desi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-12, p.e202420752
Hauptverfasser: Wang, Yan, Meng, Huiying, Yu, Renqin, Hong, Jie, Zhang, Yifan, Xia, Zhonghong, Wang, Yong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e202420752
container_title Angewandte Chemie International Edition
container_volume
creator Wang, Yan
Meng, Huiying
Yu, Renqin
Hong, Jie
Zhang, Yifan
Xia, Zhonghong
Wang, Yong
description Developing ethanol oxidation electrocatalysts with high catalytic activity, durability, and resistance to CO poisoning remains a major challenge. High-entropy alloys (HEAs) with unique physical and chemical properties have garnered substantial attention. Herein, a class of HEA nanodendrites are designed by a simple wet-chemical method. The mass activity and specific activity of the septenary PtIrRhCoFeNiCu high-entropy alloy catalyst are 2.13 A mgPt-1/1.05 A mgPt+Ir+Rh-1 and 2.95 mA cm-2, which reach 5.76-/2.84-fold and 5.57-fold improvements relative to commercial Pt/C (0.37 A mgPt-1 and 0.53 mA cm-2), respectively. Remarkably, after the i-t test of up to 100,000s and the accelerated durability test of 1500 cycles, 81.22% and 68.54% of the initial mass activity are well retained, respectively. The lattice distortion-associated local tensile strain as demonstrated by increased Pt-Pt bond length enhances ethanol adsorption and reduces reaction barriers. The upshift d-band center promotes ethanol oxidation and anti-CO capability of the catalysts. Moreover, hysteresis diffusion effect induced by lattice distortion in the HEA nanodendrites contributes to their superb ethanol oxidation stability. In-situ infrared absorption spectroscopy reveals that the three HEA nanodendrites mainly follow C1 pathway with C-C bond breaking to form CO followed by CO oxidation especially at a wide range of high potentials.
doi_str_mv 10.1002/anie.202420752
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3148500527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148500527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c958-51eab6a7d34a89bc9da8b4b453e408c78b32319548755ca1bf3304fc6b006d4b3</originalsourceid><addsrcrecordid>eNo9kEtPGzEUha2KqlDabZfISzaT2mM79ixhFAoSKlJF1yM_7oCLYwfbAfIb-qfrCMrqPnTuuTofQt8oWVBC-u86elj0pOc9kaL_gI6o6GnHpGQHreeMdVIJeog-l_Kn6ZUiy0_okA2Sck7UEfr7O9oUnyBWn6IO-CpWyG0TwVZw-NLf3XerWHPa7PBZCGmHf-qYHESXfYWC55TxL1jr_KBN2OHVPHvrmxseuxGfp-jwGEA_6TvANT3r3Oa03gSogFf1vlkFfPPind6__4I-zjoU-PpWj9Htxep2vOyub35cjWfXnR2E6gQFbZZaOsa1GowdnFaGGy4YtERWKsN6RgfBlRTCampmxgif7dIQsnTcsGN0-mq7yelxC6VOa18shKAjpG2ZGOVKECJ62aSLV6nNqZQM87TJvoXdTZRMe_7Tnv_0zr8dnLx5b80a3Lv8P3D2D7zPgyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148500527</pqid></control><display><type>article</type><title>Unconventional Interconnected High-Entropy Alloy Nanodendrites for Remarkably Efficient C-C Bond Cleavage toward Complete Ethanol Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yan ; Meng, Huiying ; Yu, Renqin ; Hong, Jie ; Zhang, Yifan ; Xia, Zhonghong ; Wang, Yong</creator><creatorcontrib>Wang, Yan ; Meng, Huiying ; Yu, Renqin ; Hong, Jie ; Zhang, Yifan ; Xia, Zhonghong ; Wang, Yong</creatorcontrib><description>Developing ethanol oxidation electrocatalysts with high catalytic activity, durability, and resistance to CO poisoning remains a major challenge. High-entropy alloys (HEAs) with unique physical and chemical properties have garnered substantial attention. Herein, a class of HEA nanodendrites are designed by a simple wet-chemical method. The mass activity and specific activity of the septenary PtIrRhCoFeNiCu high-entropy alloy catalyst are 2.13 A mgPt-1/1.05 A mgPt+Ir+Rh-1 and 2.95 mA cm-2, which reach 5.76-/2.84-fold and 5.57-fold improvements relative to commercial Pt/C (0.37 A mgPt-1 and 0.53 mA cm-2), respectively. Remarkably, after the i-t test of up to 100,000s and the accelerated durability test of 1500 cycles, 81.22% and 68.54% of the initial mass activity are well retained, respectively. The lattice distortion-associated local tensile strain as demonstrated by increased Pt-Pt bond length enhances ethanol adsorption and reduces reaction barriers. The upshift d-band center promotes ethanol oxidation and anti-CO capability of the catalysts. Moreover, hysteresis diffusion effect induced by lattice distortion in the HEA nanodendrites contributes to their superb ethanol oxidation stability. In-situ infrared absorption spectroscopy reveals that the three HEA nanodendrites mainly follow C1 pathway with C-C bond breaking to form CO followed by CO oxidation especially at a wide range of high potentials.</description><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202420752</identifier><identifier>PMID: 39714408</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Angewandte Chemie International Edition, 2024-12, p.e202420752</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39714408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Meng, Huiying</creatorcontrib><creatorcontrib>Yu, Renqin</creatorcontrib><creatorcontrib>Hong, Jie</creatorcontrib><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Xia, Zhonghong</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><title>Unconventional Interconnected High-Entropy Alloy Nanodendrites for Remarkably Efficient C-C Bond Cleavage toward Complete Ethanol Oxidation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Developing ethanol oxidation electrocatalysts with high catalytic activity, durability, and resistance to CO poisoning remains a major challenge. High-entropy alloys (HEAs) with unique physical and chemical properties have garnered substantial attention. Herein, a class of HEA nanodendrites are designed by a simple wet-chemical method. The mass activity and specific activity of the septenary PtIrRhCoFeNiCu high-entropy alloy catalyst are 2.13 A mgPt-1/1.05 A mgPt+Ir+Rh-1 and 2.95 mA cm-2, which reach 5.76-/2.84-fold and 5.57-fold improvements relative to commercial Pt/C (0.37 A mgPt-1 and 0.53 mA cm-2), respectively. Remarkably, after the i-t test of up to 100,000s and the accelerated durability test of 1500 cycles, 81.22% and 68.54% of the initial mass activity are well retained, respectively. The lattice distortion-associated local tensile strain as demonstrated by increased Pt-Pt bond length enhances ethanol adsorption and reduces reaction barriers. The upshift d-band center promotes ethanol oxidation and anti-CO capability of the catalysts. Moreover, hysteresis diffusion effect induced by lattice distortion in the HEA nanodendrites contributes to their superb ethanol oxidation stability. In-situ infrared absorption spectroscopy reveals that the three HEA nanodendrites mainly follow C1 pathway with C-C bond breaking to form CO followed by CO oxidation especially at a wide range of high potentials.</description><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPGzEUha2KqlDabZfISzaT2mM79ixhFAoSKlJF1yM_7oCLYwfbAfIb-qfrCMrqPnTuuTofQt8oWVBC-u86elj0pOc9kaL_gI6o6GnHpGQHreeMdVIJeog-l_Kn6ZUiy0_okA2Sck7UEfr7O9oUnyBWn6IO-CpWyG0TwVZw-NLf3XerWHPa7PBZCGmHf-qYHESXfYWC55TxL1jr_KBN2OHVPHvrmxseuxGfp-jwGEA_6TvANT3r3Oa03gSogFf1vlkFfPPind6__4I-zjoU-PpWj9Htxep2vOyub35cjWfXnR2E6gQFbZZaOsa1GowdnFaGGy4YtERWKsN6RgfBlRTCampmxgif7dIQsnTcsGN0-mq7yelxC6VOa18shKAjpG2ZGOVKECJ62aSLV6nNqZQM87TJvoXdTZRMe_7Tnv_0zr8dnLx5b80a3Lv8P3D2D7zPgyY</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Wang, Yan</creator><creator>Meng, Huiying</creator><creator>Yu, Renqin</creator><creator>Hong, Jie</creator><creator>Zhang, Yifan</creator><creator>Xia, Zhonghong</creator><creator>Wang, Yong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241223</creationdate><title>Unconventional Interconnected High-Entropy Alloy Nanodendrites for Remarkably Efficient C-C Bond Cleavage toward Complete Ethanol Oxidation</title><author>Wang, Yan ; Meng, Huiying ; Yu, Renqin ; Hong, Jie ; Zhang, Yifan ; Xia, Zhonghong ; Wang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c958-51eab6a7d34a89bc9da8b4b453e408c78b32319548755ca1bf3304fc6b006d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Meng, Huiying</creatorcontrib><creatorcontrib>Yu, Renqin</creatorcontrib><creatorcontrib>Hong, Jie</creatorcontrib><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Xia, Zhonghong</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan</au><au>Meng, Huiying</au><au>Yu, Renqin</au><au>Hong, Jie</au><au>Zhang, Yifan</au><au>Xia, Zhonghong</au><au>Wang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unconventional Interconnected High-Entropy Alloy Nanodendrites for Remarkably Efficient C-C Bond Cleavage toward Complete Ethanol Oxidation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-12-23</date><risdate>2024</risdate><spage>e202420752</spage><pages>e202420752-</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Developing ethanol oxidation electrocatalysts with high catalytic activity, durability, and resistance to CO poisoning remains a major challenge. High-entropy alloys (HEAs) with unique physical and chemical properties have garnered substantial attention. Herein, a class of HEA nanodendrites are designed by a simple wet-chemical method. The mass activity and specific activity of the septenary PtIrRhCoFeNiCu high-entropy alloy catalyst are 2.13 A mgPt-1/1.05 A mgPt+Ir+Rh-1 and 2.95 mA cm-2, which reach 5.76-/2.84-fold and 5.57-fold improvements relative to commercial Pt/C (0.37 A mgPt-1 and 0.53 mA cm-2), respectively. Remarkably, after the i-t test of up to 100,000s and the accelerated durability test of 1500 cycles, 81.22% and 68.54% of the initial mass activity are well retained, respectively. The lattice distortion-associated local tensile strain as demonstrated by increased Pt-Pt bond length enhances ethanol adsorption and reduces reaction barriers. The upshift d-band center promotes ethanol oxidation and anti-CO capability of the catalysts. Moreover, hysteresis diffusion effect induced by lattice distortion in the HEA nanodendrites contributes to their superb ethanol oxidation stability. In-situ infrared absorption spectroscopy reveals that the three HEA nanodendrites mainly follow C1 pathway with C-C bond breaking to form CO followed by CO oxidation especially at a wide range of high potentials.</abstract><cop>Germany</cop><pmid>39714408</pmid><doi>10.1002/anie.202420752</doi></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-12, p.e202420752
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3148500527
source Wiley Online Library Journals Frontfile Complete
title Unconventional Interconnected High-Entropy Alloy Nanodendrites for Remarkably Efficient C-C Bond Cleavage toward Complete Ethanol Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unconventional%20Interconnected%20High-Entropy%20Alloy%20Nanodendrites%20for%20Remarkably%20Efficient%20C-C%20Bond%20Cleavage%20toward%20Complete%20Ethanol%20Oxidation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Yan&rft.date=2024-12-23&rft.spage=e202420752&rft.pages=e202420752-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202420752&rft_dat=%3Cproquest_cross%3E3148500527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148500527&rft_id=info:pmid/39714408&rfr_iscdi=true