Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination

Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2024-12, p.e2400913
Hauptverfasser: Huang, Xinyi, Lai, Yundong, Li, Haonan, He, Yuanxin, Wang, Lingna, Zhang, Haoran, Xu, Yongfeng, Zhang, Qiuyu, Li, Chunmei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2400913
container_title Macromolecular rapid communications.
container_volume
creator Huang, Xinyi
Lai, Yundong
Li, Haonan
He, Yuanxin
Wang, Lingna
Zhang, Haoran
Xu, Yongfeng
Zhang, Qiuyu
Li, Chunmei
description Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.
doi_str_mv 10.1002/marc.202400913
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3148500526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148500526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-117290a4cc880e1cb148e9e610c9d929bfea2285954d0d7bb8156a456b81003c3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EolBYGVFGlpQ7O0njsVSFIrViaJkjx7kUozQutoPEvyelpdN96L1HuoexO4QRAvDHrXJ6xIEnABLFGbvClGMsJB-f9z1wHqMQ2YBde_8JAHkC_JINhBxjgphdsXoVnG03kWqraG27zUe0oqaO56Qa069njfLBbsn56Nuo6Gk9iZdUGRWoipZGO-uD63ToHP0RlhRUEzdmsx-m1rrKtCoY296wi1o1nm6Pdcjen2fr6TxevL28TieLWGMOIUYccwkq0TrPgVCXmOQkKUPQspJcljUpzvNUpkkF1bgsc0wzlaRZ3wAILYbs4cDdOfvVkQ_F1nhNTaNasp0vRA9MAVKe9dHRIbr_wjuqi50zvc6fAqHYuy32bouT2_7g_sjuyi1Vp_i_TPELHF90mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148500526</pqid></control><display><type>article</type><title>Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Xinyi ; Lai, Yundong ; Li, Haonan ; He, Yuanxin ; Wang, Lingna ; Zhang, Haoran ; Xu, Yongfeng ; Zhang, Qiuyu ; Li, Chunmei</creator><creatorcontrib>Huang, Xinyi ; Lai, Yundong ; Li, Haonan ; He, Yuanxin ; Wang, Lingna ; Zhang, Haoran ; Xu, Yongfeng ; Zhang, Qiuyu ; Li, Chunmei</creatorcontrib><description>Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.</description><identifier>ISSN: 1022-1336</identifier><identifier>ISSN: 1521-3927</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.202400913</identifier><identifier>PMID: 39714116</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Macromolecular rapid communications., 2024-12, p.e2400913</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-117290a4cc880e1cb148e9e610c9d929bfea2285954d0d7bb8156a456b81003c3</cites><orcidid>0000-0002-6173-3393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39714116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Xinyi</creatorcontrib><creatorcontrib>Lai, Yundong</creatorcontrib><creatorcontrib>Li, Haonan</creatorcontrib><creatorcontrib>He, Yuanxin</creatorcontrib><creatorcontrib>Wang, Lingna</creatorcontrib><creatorcontrib>Zhang, Haoran</creatorcontrib><creatorcontrib>Xu, Yongfeng</creatorcontrib><creatorcontrib>Zhang, Qiuyu</creatorcontrib><creatorcontrib>Li, Chunmei</creatorcontrib><title>Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.</description><issn>1022-1336</issn><issn>1521-3927</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EolBYGVFGlpQ7O0njsVSFIrViaJkjx7kUozQutoPEvyelpdN96L1HuoexO4QRAvDHrXJ6xIEnABLFGbvClGMsJB-f9z1wHqMQ2YBde_8JAHkC_JINhBxjgphdsXoVnG03kWqraG27zUe0oqaO56Qa069njfLBbsn56Nuo6Gk9iZdUGRWoipZGO-uD63ToHP0RlhRUEzdmsx-m1rrKtCoY296wi1o1nm6Pdcjen2fr6TxevL28TieLWGMOIUYccwkq0TrPgVCXmOQkKUPQspJcljUpzvNUpkkF1bgsc0wzlaRZ3wAILYbs4cDdOfvVkQ_F1nhNTaNasp0vRA9MAVKe9dHRIbr_wjuqi50zvc6fAqHYuy32bouT2_7g_sjuyi1Vp_i_TPELHF90mw</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Huang, Xinyi</creator><creator>Lai, Yundong</creator><creator>Li, Haonan</creator><creator>He, Yuanxin</creator><creator>Wang, Lingna</creator><creator>Zhang, Haoran</creator><creator>Xu, Yongfeng</creator><creator>Zhang, Qiuyu</creator><creator>Li, Chunmei</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6173-3393</orcidid></search><sort><creationdate>20241223</creationdate><title>Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination</title><author>Huang, Xinyi ; Lai, Yundong ; Li, Haonan ; He, Yuanxin ; Wang, Lingna ; Zhang, Haoran ; Xu, Yongfeng ; Zhang, Qiuyu ; Li, Chunmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-117290a4cc880e1cb148e9e610c9d929bfea2285954d0d7bb8156a456b81003c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xinyi</creatorcontrib><creatorcontrib>Lai, Yundong</creatorcontrib><creatorcontrib>Li, Haonan</creatorcontrib><creatorcontrib>He, Yuanxin</creatorcontrib><creatorcontrib>Wang, Lingna</creatorcontrib><creatorcontrib>Zhang, Haoran</creatorcontrib><creatorcontrib>Xu, Yongfeng</creatorcontrib><creatorcontrib>Zhang, Qiuyu</creatorcontrib><creatorcontrib>Li, Chunmei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xinyi</au><au>Lai, Yundong</au><au>Li, Haonan</au><au>He, Yuanxin</au><au>Wang, Lingna</au><au>Zhang, Haoran</au><au>Xu, Yongfeng</au><au>Zhang, Qiuyu</au><au>Li, Chunmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2024-12-23</date><risdate>2024</risdate><spage>e2400913</spage><pages>e2400913-</pages><issn>1022-1336</issn><issn>1521-3927</issn><eissn>1521-3927</eissn><abstract>Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.</abstract><cop>Germany</cop><pmid>39714116</pmid><doi>10.1002/marc.202400913</doi><orcidid>https://orcid.org/0000-0002-6173-3393</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2024-12, p.e2400913
issn 1022-1336
1521-3927
1521-3927
language eng
recordid cdi_proquest_miscellaneous_3148500526
source Wiley Online Library Journals Frontfile Complete
title Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20and%20Tough%20Self-Healing%20Elastomers%20via%20BTA-Mediated%20Microstructure%20and%20Metal-ligand%20Coordination&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Huang,%20Xinyi&rft.date=2024-12-23&rft.spage=e2400913&rft.pages=e2400913-&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.202400913&rft_dat=%3Cproquest_cross%3E3148500526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148500526&rft_id=info:pmid/39714116&rfr_iscdi=true