DAMNet: Dynamic mobile architectures for Alzheimer's disease
Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in val...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2025-02, Vol.185, p.109517, Article 109517 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109517 |
container_title | Computers in biology and medicine |
container_volume | 185 |
creator | Zhou, Meihua Zheng, Tianlong Wu, Zhihua Wan, Nan Cheng, Min |
description | Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in validation and 99.9 % in testing phases. Despite a 20 % pruning rate, DAMNet maintains consistent performance with less than 0.2 % loss in accuracy. The model also excels in handling 3D (Three-Dimensional) MRI data, achieving a 95.7 % F1 score within 805 s during a rigorous three-fold validation over 200 epochs. Furthermore, we introduce a novel parallel intelligent framework for early AD detection that improves feature extraction and incorporates advanced data management and control. This framework sets a new benchmark in intelligent, precise medical diagnostics, adeptly managing both 2D (Two-Dimensional) and 3D imaging data.
•DAMNet balances accuracy and efficiency for AD models, reducing size by 20% with pruning and just 0.2% performance loss.•DAMNet uses global attention, multi-scale features, and ARP, converting 3D MRI to 2D for AD with a 95.7% F1 score.•Proposed a parallel intelligent framework for early AD, optimizing imaging and accelerating pathological feature detection.•The framework enhances diagnostic speed and accuracy via self-learning and optimization, ensuring rapid clinical feedback. |
doi_str_mv | 10.1016/j.compbiomed.2024.109517 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3148495294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524016020</els_id><sourcerecordid>3148495294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1928-133d5b005250ec4de5bf2e5af2da37e024d6f2789280272a48a5e5d3e36a4d9e3</originalsourceid><addsrcrecordid>eNqFkE1PGzEQhq2qqAToX6hW4tBeNoy_sjbqJU1oQQpwgbPltWeFo904tbNI9NfXUUCVeuE00swzM68eQioKUwp0drGeujhs2xAH9FMGTJS2lrT5QCZUNboGycVHMgGgUAvF5DE5yXkNAAI4fCLHXDeg1UxNyPfl_PYOd5fV8mVjh-CqIbahx8om9xR26HZjwlx1MVXz_s8ThgHT11z5kNFmPCNHne0zfn6tp-Tx59XD4rpe3f-6WcxXtaOaqZpy7mULIJkEdMKjbDuG0nbMW95gie9nHWtUYYE1zAplJUrPkc-s8Br5Kfl2uLtN8feIeWeGkB32vd1gHLPhVCihJdOioOf_oes4pk1JVyjZCCk51YVSB8qlmHPCzmxTGGx6MRTM3rBZm3-Gzd6wORguq19eH4ztfva2-Ka0AD8OABYjzwGTyS7gxqEPqfg0Pob3v_wFasSPWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3157455319</pqid></control><display><type>article</type><title>DAMNet: Dynamic mobile architectures for Alzheimer's disease</title><source>Elsevier ScienceDirect Journals</source><creator>Zhou, Meihua ; Zheng, Tianlong ; Wu, Zhihua ; Wan, Nan ; Cheng, Min</creator><creatorcontrib>Zhou, Meihua ; Zheng, Tianlong ; Wu, Zhihua ; Wan, Nan ; Cheng, Min</creatorcontrib><description>Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in validation and 99.9 % in testing phases. Despite a 20 % pruning rate, DAMNet maintains consistent performance with less than 0.2 % loss in accuracy. The model also excels in handling 3D (Three-Dimensional) MRI data, achieving a 95.7 % F1 score within 805 s during a rigorous three-fold validation over 200 epochs. Furthermore, we introduce a novel parallel intelligent framework for early AD detection that improves feature extraction and incorporates advanced data management and control. This framework sets a new benchmark in intelligent, precise medical diagnostics, adeptly managing both 2D (Two-Dimensional) and 3D imaging data.
•DAMNet balances accuracy and efficiency for AD models, reducing size by 20% with pruning and just 0.2% performance loss.•DAMNet uses global attention, multi-scale features, and ARP, converting 3D MRI to 2D for AD with a 95.7% F1 score.•Proposed a parallel intelligent framework for early AD, optimizing imaging and accelerating pathological feature detection.•The framework enhances diagnostic speed and accuracy via self-learning and optimization, ensuring rapid clinical feedback.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.109517</identifier><identifier>PMID: 39709868</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>2D and 3D imaging ; Accuracy ; Alzheimer's disease ; DAMNet ; Data management ; Datasets ; Deep learning ; Efficiency ; Innovations ; Magnetic resonance imaging ; Medical imaging ; Neurodegenerative diseases ; Neuroimaging ; Parallel intelligence ; Three dimensional imaging</subject><ispartof>Computers in biology and medicine, 2025-02, Vol.185, p.109517, Article 109517</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1928-133d5b005250ec4de5bf2e5af2da37e024d6f2789280272a48a5e5d3e36a4d9e3</cites><orcidid>0009-0009-8618-3429 ; 0009-0008-8547-848X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482524016020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39709868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Meihua</creatorcontrib><creatorcontrib>Zheng, Tianlong</creatorcontrib><creatorcontrib>Wu, Zhihua</creatorcontrib><creatorcontrib>Wan, Nan</creatorcontrib><creatorcontrib>Cheng, Min</creatorcontrib><title>DAMNet: Dynamic mobile architectures for Alzheimer's disease</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in validation and 99.9 % in testing phases. Despite a 20 % pruning rate, DAMNet maintains consistent performance with less than 0.2 % loss in accuracy. The model also excels in handling 3D (Three-Dimensional) MRI data, achieving a 95.7 % F1 score within 805 s during a rigorous three-fold validation over 200 epochs. Furthermore, we introduce a novel parallel intelligent framework for early AD detection that improves feature extraction and incorporates advanced data management and control. This framework sets a new benchmark in intelligent, precise medical diagnostics, adeptly managing both 2D (Two-Dimensional) and 3D imaging data.
•DAMNet balances accuracy and efficiency for AD models, reducing size by 20% with pruning and just 0.2% performance loss.•DAMNet uses global attention, multi-scale features, and ARP, converting 3D MRI to 2D for AD with a 95.7% F1 score.•Proposed a parallel intelligent framework for early AD, optimizing imaging and accelerating pathological feature detection.•The framework enhances diagnostic speed and accuracy via self-learning and optimization, ensuring rapid clinical feedback.</description><subject>2D and 3D imaging</subject><subject>Accuracy</subject><subject>Alzheimer's disease</subject><subject>DAMNet</subject><subject>Data management</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Innovations</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Parallel intelligence</subject><subject>Three dimensional imaging</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PGzEQhq2qqAToX6hW4tBeNoy_sjbqJU1oQQpwgbPltWeFo904tbNI9NfXUUCVeuE00swzM68eQioKUwp0drGeujhs2xAH9FMGTJS2lrT5QCZUNboGycVHMgGgUAvF5DE5yXkNAAI4fCLHXDeg1UxNyPfl_PYOd5fV8mVjh-CqIbahx8om9xR26HZjwlx1MVXz_s8ThgHT11z5kNFmPCNHne0zfn6tp-Tx59XD4rpe3f-6WcxXtaOaqZpy7mULIJkEdMKjbDuG0nbMW95gie9nHWtUYYE1zAplJUrPkc-s8Br5Kfl2uLtN8feIeWeGkB32vd1gHLPhVCihJdOioOf_oes4pk1JVyjZCCk51YVSB8qlmHPCzmxTGGx6MRTM3rBZm3-Gzd6wORguq19eH4ztfva2-Ka0AD8OABYjzwGTyS7gxqEPqfg0Pob3v_wFasSPWg</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Zhou, Meihua</creator><creator>Zheng, Tianlong</creator><creator>Wu, Zhihua</creator><creator>Wan, Nan</creator><creator>Cheng, Min</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-8618-3429</orcidid><orcidid>https://orcid.org/0009-0008-8547-848X</orcidid></search><sort><creationdate>20250201</creationdate><title>DAMNet: Dynamic mobile architectures for Alzheimer's disease</title><author>Zhou, Meihua ; Zheng, Tianlong ; Wu, Zhihua ; Wan, Nan ; Cheng, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1928-133d5b005250ec4de5bf2e5af2da37e024d6f2789280272a48a5e5d3e36a4d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>2D and 3D imaging</topic><topic>Accuracy</topic><topic>Alzheimer's disease</topic><topic>DAMNet</topic><topic>Data management</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Innovations</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Parallel intelligence</topic><topic>Three dimensional imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Meihua</creatorcontrib><creatorcontrib>Zheng, Tianlong</creatorcontrib><creatorcontrib>Wu, Zhihua</creatorcontrib><creatorcontrib>Wan, Nan</creatorcontrib><creatorcontrib>Cheng, Min</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Meihua</au><au>Zheng, Tianlong</au><au>Wu, Zhihua</au><au>Wan, Nan</au><au>Cheng, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DAMNet: Dynamic mobile architectures for Alzheimer's disease</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2025-02-01</date><risdate>2025</risdate><volume>185</volume><spage>109517</spage><pages>109517-</pages><artnum>109517</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in validation and 99.9 % in testing phases. Despite a 20 % pruning rate, DAMNet maintains consistent performance with less than 0.2 % loss in accuracy. The model also excels in handling 3D (Three-Dimensional) MRI data, achieving a 95.7 % F1 score within 805 s during a rigorous three-fold validation over 200 epochs. Furthermore, we introduce a novel parallel intelligent framework for early AD detection that improves feature extraction and incorporates advanced data management and control. This framework sets a new benchmark in intelligent, precise medical diagnostics, adeptly managing both 2D (Two-Dimensional) and 3D imaging data.
•DAMNet balances accuracy and efficiency for AD models, reducing size by 20% with pruning and just 0.2% performance loss.•DAMNet uses global attention, multi-scale features, and ARP, converting 3D MRI to 2D for AD with a 95.7% F1 score.•Proposed a parallel intelligent framework for early AD, optimizing imaging and accelerating pathological feature detection.•The framework enhances diagnostic speed and accuracy via self-learning and optimization, ensuring rapid clinical feedback.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39709868</pmid><doi>10.1016/j.compbiomed.2024.109517</doi><orcidid>https://orcid.org/0009-0009-8618-3429</orcidid><orcidid>https://orcid.org/0009-0008-8547-848X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2025-02, Vol.185, p.109517, Article 109517 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_3148495294 |
source | Elsevier ScienceDirect Journals |
subjects | 2D and 3D imaging Accuracy Alzheimer's disease DAMNet Data management Datasets Deep learning Efficiency Innovations Magnetic resonance imaging Medical imaging Neurodegenerative diseases Neuroimaging Parallel intelligence Three dimensional imaging |
title | DAMNet: Dynamic mobile architectures for Alzheimer's disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DAMNet:%20Dynamic%20mobile%20architectures%20for%20Alzheimer's%20disease&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Zhou,%20Meihua&rft.date=2025-02-01&rft.volume=185&rft.spage=109517&rft.pages=109517-&rft.artnum=109517&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.109517&rft_dat=%3Cproquest_cross%3E3148495294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3157455319&rft_id=info:pmid/39709868&rft_els_id=S0010482524016020&rfr_iscdi=true |