DAMNet: Dynamic mobile architectures for Alzheimer's disease

Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2025-02, Vol.185, p.109517, Article 109517
Hauptverfasser: Zhou, Meihua, Zheng, Tianlong, Wu, Zhihua, Wan, Nan, Cheng, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109517
container_title Computers in biology and medicine
container_volume 185
creator Zhou, Meihua
Zheng, Tianlong
Wu, Zhihua
Wan, Nan
Cheng, Min
description Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in validation and 99.9 % in testing phases. Despite a 20 % pruning rate, DAMNet maintains consistent performance with less than 0.2 % loss in accuracy. The model also excels in handling 3D (Three-Dimensional) MRI data, achieving a 95.7 % F1 score within 805 s during a rigorous three-fold validation over 200 epochs. Furthermore, we introduce a novel parallel intelligent framework for early AD detection that improves feature extraction and incorporates advanced data management and control. This framework sets a new benchmark in intelligent, precise medical diagnostics, adeptly managing both 2D (Two-Dimensional) and 3D imaging data. •DAMNet balances accuracy and efficiency for AD models, reducing size by 20% with pruning and just 0.2% performance loss.•DAMNet uses global attention, multi-scale features, and ARP, converting 3D MRI to 2D for AD with a 95.7% F1 score.•Proposed a parallel intelligent framework for early AD, optimizing imaging and accelerating pathological feature detection.•The framework enhances diagnostic speed and accuracy via self-learning and optimization, ensuring rapid clinical feedback.
doi_str_mv 10.1016/j.compbiomed.2024.109517
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3148495294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524016020</els_id><sourcerecordid>3148495294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1928-133d5b005250ec4de5bf2e5af2da37e024d6f2789280272a48a5e5d3e36a4d9e3</originalsourceid><addsrcrecordid>eNqFkE1PGzEQhq2qqAToX6hW4tBeNoy_sjbqJU1oQQpwgbPltWeFo904tbNI9NfXUUCVeuE00swzM68eQioKUwp0drGeujhs2xAH9FMGTJS2lrT5QCZUNboGycVHMgGgUAvF5DE5yXkNAAI4fCLHXDeg1UxNyPfl_PYOd5fV8mVjh-CqIbahx8om9xR26HZjwlx1MVXz_s8ThgHT11z5kNFmPCNHne0zfn6tp-Tx59XD4rpe3f-6WcxXtaOaqZpy7mULIJkEdMKjbDuG0nbMW95gie9nHWtUYYE1zAplJUrPkc-s8Br5Kfl2uLtN8feIeWeGkB32vd1gHLPhVCihJdOioOf_oes4pk1JVyjZCCk51YVSB8qlmHPCzmxTGGx6MRTM3rBZm3-Gzd6wORguq19eH4ztfva2-Ka0AD8OABYjzwGTyS7gxqEPqfg0Pob3v_wFasSPWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3157455319</pqid></control><display><type>article</type><title>DAMNet: Dynamic mobile architectures for Alzheimer's disease</title><source>Elsevier ScienceDirect Journals</source><creator>Zhou, Meihua ; Zheng, Tianlong ; Wu, Zhihua ; Wan, Nan ; Cheng, Min</creator><creatorcontrib>Zhou, Meihua ; Zheng, Tianlong ; Wu, Zhihua ; Wan, Nan ; Cheng, Min</creatorcontrib><description>Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in validation and 99.9 % in testing phases. Despite a 20 % pruning rate, DAMNet maintains consistent performance with less than 0.2 % loss in accuracy. The model also excels in handling 3D (Three-Dimensional) MRI data, achieving a 95.7 % F1 score within 805 s during a rigorous three-fold validation over 200 epochs. Furthermore, we introduce a novel parallel intelligent framework for early AD detection that improves feature extraction and incorporates advanced data management and control. This framework sets a new benchmark in intelligent, precise medical diagnostics, adeptly managing both 2D (Two-Dimensional) and 3D imaging data. •DAMNet balances accuracy and efficiency for AD models, reducing size by 20% with pruning and just 0.2% performance loss.•DAMNet uses global attention, multi-scale features, and ARP, converting 3D MRI to 2D for AD with a 95.7% F1 score.•Proposed a parallel intelligent framework for early AD, optimizing imaging and accelerating pathological feature detection.•The framework enhances diagnostic speed and accuracy via self-learning and optimization, ensuring rapid clinical feedback.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.109517</identifier><identifier>PMID: 39709868</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>2D and 3D imaging ; Accuracy ; Alzheimer's disease ; DAMNet ; Data management ; Datasets ; Deep learning ; Efficiency ; Innovations ; Magnetic resonance imaging ; Medical imaging ; Neurodegenerative diseases ; Neuroimaging ; Parallel intelligence ; Three dimensional imaging</subject><ispartof>Computers in biology and medicine, 2025-02, Vol.185, p.109517, Article 109517</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1928-133d5b005250ec4de5bf2e5af2da37e024d6f2789280272a48a5e5d3e36a4d9e3</cites><orcidid>0009-0009-8618-3429 ; 0009-0008-8547-848X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482524016020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39709868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Meihua</creatorcontrib><creatorcontrib>Zheng, Tianlong</creatorcontrib><creatorcontrib>Wu, Zhihua</creatorcontrib><creatorcontrib>Wan, Nan</creatorcontrib><creatorcontrib>Cheng, Min</creatorcontrib><title>DAMNet: Dynamic mobile architectures for Alzheimer's disease</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in validation and 99.9 % in testing phases. Despite a 20 % pruning rate, DAMNet maintains consistent performance with less than 0.2 % loss in accuracy. The model also excels in handling 3D (Three-Dimensional) MRI data, achieving a 95.7 % F1 score within 805 s during a rigorous three-fold validation over 200 epochs. Furthermore, we introduce a novel parallel intelligent framework for early AD detection that improves feature extraction and incorporates advanced data management and control. This framework sets a new benchmark in intelligent, precise medical diagnostics, adeptly managing both 2D (Two-Dimensional) and 3D imaging data. •DAMNet balances accuracy and efficiency for AD models, reducing size by 20% with pruning and just 0.2% performance loss.•DAMNet uses global attention, multi-scale features, and ARP, converting 3D MRI to 2D for AD with a 95.7% F1 score.•Proposed a parallel intelligent framework for early AD, optimizing imaging and accelerating pathological feature detection.•The framework enhances diagnostic speed and accuracy via self-learning and optimization, ensuring rapid clinical feedback.</description><subject>2D and 3D imaging</subject><subject>Accuracy</subject><subject>Alzheimer's disease</subject><subject>DAMNet</subject><subject>Data management</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Innovations</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Parallel intelligence</subject><subject>Three dimensional imaging</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PGzEQhq2qqAToX6hW4tBeNoy_sjbqJU1oQQpwgbPltWeFo904tbNI9NfXUUCVeuE00swzM68eQioKUwp0drGeujhs2xAH9FMGTJS2lrT5QCZUNboGycVHMgGgUAvF5DE5yXkNAAI4fCLHXDeg1UxNyPfl_PYOd5fV8mVjh-CqIbahx8om9xR26HZjwlx1MVXz_s8ThgHT11z5kNFmPCNHne0zfn6tp-Tx59XD4rpe3f-6WcxXtaOaqZpy7mULIJkEdMKjbDuG0nbMW95gie9nHWtUYYE1zAplJUrPkc-s8Br5Kfl2uLtN8feIeWeGkB32vd1gHLPhVCihJdOioOf_oes4pk1JVyjZCCk51YVSB8qlmHPCzmxTGGx6MRTM3rBZm3-Gzd6wORguq19eH4ztfva2-Ka0AD8OABYjzwGTyS7gxqEPqfg0Pob3v_wFasSPWg</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Zhou, Meihua</creator><creator>Zheng, Tianlong</creator><creator>Wu, Zhihua</creator><creator>Wan, Nan</creator><creator>Cheng, Min</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-8618-3429</orcidid><orcidid>https://orcid.org/0009-0008-8547-848X</orcidid></search><sort><creationdate>20250201</creationdate><title>DAMNet: Dynamic mobile architectures for Alzheimer's disease</title><author>Zhou, Meihua ; Zheng, Tianlong ; Wu, Zhihua ; Wan, Nan ; Cheng, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1928-133d5b005250ec4de5bf2e5af2da37e024d6f2789280272a48a5e5d3e36a4d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>2D and 3D imaging</topic><topic>Accuracy</topic><topic>Alzheimer's disease</topic><topic>DAMNet</topic><topic>Data management</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Innovations</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Parallel intelligence</topic><topic>Three dimensional imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Meihua</creatorcontrib><creatorcontrib>Zheng, Tianlong</creatorcontrib><creatorcontrib>Wu, Zhihua</creatorcontrib><creatorcontrib>Wan, Nan</creatorcontrib><creatorcontrib>Cheng, Min</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Meihua</au><au>Zheng, Tianlong</au><au>Wu, Zhihua</au><au>Wan, Nan</au><au>Cheng, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DAMNet: Dynamic mobile architectures for Alzheimer's disease</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2025-02-01</date><risdate>2025</risdate><volume>185</volume><spage>109517</spage><pages>109517-</pages><artnum>109517</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.3 % in validation and 99.9 % in testing phases. Despite a 20 % pruning rate, DAMNet maintains consistent performance with less than 0.2 % loss in accuracy. The model also excels in handling 3D (Three-Dimensional) MRI data, achieving a 95.7 % F1 score within 805 s during a rigorous three-fold validation over 200 epochs. Furthermore, we introduce a novel parallel intelligent framework for early AD detection that improves feature extraction and incorporates advanced data management and control. This framework sets a new benchmark in intelligent, precise medical diagnostics, adeptly managing both 2D (Two-Dimensional) and 3D imaging data. •DAMNet balances accuracy and efficiency for AD models, reducing size by 20% with pruning and just 0.2% performance loss.•DAMNet uses global attention, multi-scale features, and ARP, converting 3D MRI to 2D for AD with a 95.7% F1 score.•Proposed a parallel intelligent framework for early AD, optimizing imaging and accelerating pathological feature detection.•The framework enhances diagnostic speed and accuracy via self-learning and optimization, ensuring rapid clinical feedback.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39709868</pmid><doi>10.1016/j.compbiomed.2024.109517</doi><orcidid>https://orcid.org/0009-0009-8618-3429</orcidid><orcidid>https://orcid.org/0009-0008-8547-848X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2025-02, Vol.185, p.109517, Article 109517
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3148495294
source Elsevier ScienceDirect Journals
subjects 2D and 3D imaging
Accuracy
Alzheimer's disease
DAMNet
Data management
Datasets
Deep learning
Efficiency
Innovations
Magnetic resonance imaging
Medical imaging
Neurodegenerative diseases
Neuroimaging
Parallel intelligence
Three dimensional imaging
title DAMNet: Dynamic mobile architectures for Alzheimer's disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DAMNet:%20Dynamic%20mobile%20architectures%20for%20Alzheimer's%20disease&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Zhou,%20Meihua&rft.date=2025-02-01&rft.volume=185&rft.spage=109517&rft.pages=109517-&rft.artnum=109517&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.109517&rft_dat=%3Cproquest_cross%3E3148495294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3157455319&rft_id=info:pmid/39709868&rft_els_id=S0010482524016020&rfr_iscdi=true