Bending stiffness of Toxoplasma gondii actin filaments

Actin is essential for the survival and pathogenicity of the Apicomplexan parasite Toxoplasma gondii, where it plays essential functions in cargo transport, invasion, egress, and organelle inheritance. Recent work has shown that, unlike vertebrate skeletal muscle actin, purified T. gondii actin fila...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2024-12, p.108101, Article 108101
Hauptverfasser: Cao, Wenxiang, Sladewski, Thomas E., Heaslip, Aoife T., De La Cruz, Enrique M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108101
container_title The Journal of biological chemistry
container_volume
creator Cao, Wenxiang
Sladewski, Thomas E.
Heaslip, Aoife T.
De La Cruz, Enrique M.
description Actin is essential for the survival and pathogenicity of the Apicomplexan parasite Toxoplasma gondii, where it plays essential functions in cargo transport, invasion, egress, and organelle inheritance. Recent work has shown that, unlike vertebrate skeletal muscle actin, purified T. gondii actin filaments (TgAct1) can undergo rapid treadmilling, due to large differences in the barbed- and pointed-end critical concentrations, rapid subunit dissociation from filament ends, and a rapid nucleotide exchange rate constant from free monomers. Previous structural analysis suggested that the unique assembly properties of TgAct1filaments may be a functional consequence of reduced contacts between the DNAse-1 binding loop (D-loop) of a filament subunit and its adjacent, long-axis subunit neighbor. Because the D-loop makes stabilizing interactions between neighboring subunits, it has been implicated in regulating the mechanical properties of actin filaments. In this study, we measured the bending persistence length (LB) of TgAct1 filaments and the filament length distribution. We found that despite compromised intersubunit D-loop contacts, TgAct1 filaments have similar bending stiffness and thermodynamic stability as vertebrate actin filaments. Analysis of published cryoEM image density maps indicates that TgAct1 filaments retain a stabilizing inter-subunit salt bridge between E168 and K62 and reveals visible density between Y167 and S61 of adjacent filament subunits, consistent with a conserved cation binding site proximal to the D-loop, as initially identified in vertebrate skeletal muscle actin filaments. These results favor a mechanism in which weak D-loop interactions compromise TgAct1 subunit incorporation at filament ends, while minimally affecting overall subunit interactions within filaments.
doi_str_mv 10.1016/j.jbc.2024.108101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3147973012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824026036</els_id><sourcerecordid>3147973012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1931-79da3cc748bc32b8953c888c189487c909e8d3cf25f4d2eec7b88424701c4a7d3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EoqXwAFxQjlxSvCW2xQkqNqkSlyJxs5zJpHKUpcQpgrfHVQtH5jLbP780HyGXjM4ZZflNPa8LmHPKZex1HB2RaSxEKjL2fkymlHKWGp7pCTkLoaYxpGGnZCKMojnP-ZTk99iVvlsnYfRV1WEISV8lq_6r3zQutC5Z93HvEwej75LKN67Fbgzn5KRyTcCLQ56Rt8eH1eI5Xb4-vSzulikwI1iqTOkEgJK6AMELbTIBWmtg2kitwFCDuhRQ8aySJUcEVWgtuVSUgXSqFDNyvffdDP3HFsNoWx8Am8Z12G-DFUwqowRlPErZXgpDH8KAld0MvnXDt2XU7nDZ2kZcdofL7nHFm6uD_bZosfy7-OUTBbd7AcYnPz0ONoDHDrD0A8Joy97_Y_8DZ4V5JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147973012</pqid></control><display><type>article</type><title>Bending stiffness of Toxoplasma gondii actin filaments</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cao, Wenxiang ; Sladewski, Thomas E. ; Heaslip, Aoife T. ; De La Cruz, Enrique M.</creator><creatorcontrib>Cao, Wenxiang ; Sladewski, Thomas E. ; Heaslip, Aoife T. ; De La Cruz, Enrique M.</creatorcontrib><description>Actin is essential for the survival and pathogenicity of the Apicomplexan parasite Toxoplasma gondii, where it plays essential functions in cargo transport, invasion, egress, and organelle inheritance. Recent work has shown that, unlike vertebrate skeletal muscle actin, purified T. gondii actin filaments (TgAct1) can undergo rapid treadmilling, due to large differences in the barbed- and pointed-end critical concentrations, rapid subunit dissociation from filament ends, and a rapid nucleotide exchange rate constant from free monomers. Previous structural analysis suggested that the unique assembly properties of TgAct1filaments may be a functional consequence of reduced contacts between the DNAse-1 binding loop (D-loop) of a filament subunit and its adjacent, long-axis subunit neighbor. Because the D-loop makes stabilizing interactions between neighboring subunits, it has been implicated in regulating the mechanical properties of actin filaments. In this study, we measured the bending persistence length (LB) of TgAct1 filaments and the filament length distribution. We found that despite compromised intersubunit D-loop contacts, TgAct1 filaments have similar bending stiffness and thermodynamic stability as vertebrate actin filaments. Analysis of published cryoEM image density maps indicates that TgAct1 filaments retain a stabilizing inter-subunit salt bridge between E168 and K62 and reveals visible density between Y167 and S61 of adjacent filament subunits, consistent with a conserved cation binding site proximal to the D-loop, as initially identified in vertebrate skeletal muscle actin filaments. These results favor a mechanism in which weak D-loop interactions compromise TgAct1 subunit incorporation at filament ends, while minimally affecting overall subunit interactions within filaments.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.108101</identifier><identifier>PMID: 39706262</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>The Journal of biological chemistry, 2024-12, p.108101, Article 108101</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1931-79da3cc748bc32b8953c888c189487c909e8d3cf25f4d2eec7b88424701c4a7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39706262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Wenxiang</creatorcontrib><creatorcontrib>Sladewski, Thomas E.</creatorcontrib><creatorcontrib>Heaslip, Aoife T.</creatorcontrib><creatorcontrib>De La Cruz, Enrique M.</creatorcontrib><title>Bending stiffness of Toxoplasma gondii actin filaments</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Actin is essential for the survival and pathogenicity of the Apicomplexan parasite Toxoplasma gondii, where it plays essential functions in cargo transport, invasion, egress, and organelle inheritance. Recent work has shown that, unlike vertebrate skeletal muscle actin, purified T. gondii actin filaments (TgAct1) can undergo rapid treadmilling, due to large differences in the barbed- and pointed-end critical concentrations, rapid subunit dissociation from filament ends, and a rapid nucleotide exchange rate constant from free monomers. Previous structural analysis suggested that the unique assembly properties of TgAct1filaments may be a functional consequence of reduced contacts between the DNAse-1 binding loop (D-loop) of a filament subunit and its adjacent, long-axis subunit neighbor. Because the D-loop makes stabilizing interactions between neighboring subunits, it has been implicated in regulating the mechanical properties of actin filaments. In this study, we measured the bending persistence length (LB) of TgAct1 filaments and the filament length distribution. We found that despite compromised intersubunit D-loop contacts, TgAct1 filaments have similar bending stiffness and thermodynamic stability as vertebrate actin filaments. Analysis of published cryoEM image density maps indicates that TgAct1 filaments retain a stabilizing inter-subunit salt bridge between E168 and K62 and reveals visible density between Y167 and S61 of adjacent filament subunits, consistent with a conserved cation binding site proximal to the D-loop, as initially identified in vertebrate skeletal muscle actin filaments. These results favor a mechanism in which weak D-loop interactions compromise TgAct1 subunit incorporation at filament ends, while minimally affecting overall subunit interactions within filaments.</description><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhi0EoqXwAFxQjlxSvCW2xQkqNqkSlyJxs5zJpHKUpcQpgrfHVQtH5jLbP780HyGXjM4ZZflNPa8LmHPKZex1HB2RaSxEKjL2fkymlHKWGp7pCTkLoaYxpGGnZCKMojnP-ZTk99iVvlsnYfRV1WEISV8lq_6r3zQutC5Z93HvEwej75LKN67Fbgzn5KRyTcCLQ56Rt8eH1eI5Xb4-vSzulikwI1iqTOkEgJK6AMELbTIBWmtg2kitwFCDuhRQ8aySJUcEVWgtuVSUgXSqFDNyvffdDP3HFsNoWx8Am8Z12G-DFUwqowRlPErZXgpDH8KAld0MvnXDt2XU7nDZ2kZcdofL7nHFm6uD_bZosfy7-OUTBbd7AcYnPz0ONoDHDrD0A8Joy97_Y_8DZ4V5JA</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Cao, Wenxiang</creator><creator>Sladewski, Thomas E.</creator><creator>Heaslip, Aoife T.</creator><creator>De La Cruz, Enrique M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241218</creationdate><title>Bending stiffness of Toxoplasma gondii actin filaments</title><author>Cao, Wenxiang ; Sladewski, Thomas E. ; Heaslip, Aoife T. ; De La Cruz, Enrique M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1931-79da3cc748bc32b8953c888c189487c909e8d3cf25f4d2eec7b88424701c4a7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Wenxiang</creatorcontrib><creatorcontrib>Sladewski, Thomas E.</creatorcontrib><creatorcontrib>Heaslip, Aoife T.</creatorcontrib><creatorcontrib>De La Cruz, Enrique M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Wenxiang</au><au>Sladewski, Thomas E.</au><au>Heaslip, Aoife T.</au><au>De La Cruz, Enrique M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bending stiffness of Toxoplasma gondii actin filaments</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-12-18</date><risdate>2024</risdate><spage>108101</spage><pages>108101-</pages><artnum>108101</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Actin is essential for the survival and pathogenicity of the Apicomplexan parasite Toxoplasma gondii, where it plays essential functions in cargo transport, invasion, egress, and organelle inheritance. Recent work has shown that, unlike vertebrate skeletal muscle actin, purified T. gondii actin filaments (TgAct1) can undergo rapid treadmilling, due to large differences in the barbed- and pointed-end critical concentrations, rapid subunit dissociation from filament ends, and a rapid nucleotide exchange rate constant from free monomers. Previous structural analysis suggested that the unique assembly properties of TgAct1filaments may be a functional consequence of reduced contacts between the DNAse-1 binding loop (D-loop) of a filament subunit and its adjacent, long-axis subunit neighbor. Because the D-loop makes stabilizing interactions between neighboring subunits, it has been implicated in regulating the mechanical properties of actin filaments. In this study, we measured the bending persistence length (LB) of TgAct1 filaments and the filament length distribution. We found that despite compromised intersubunit D-loop contacts, TgAct1 filaments have similar bending stiffness and thermodynamic stability as vertebrate actin filaments. Analysis of published cryoEM image density maps indicates that TgAct1 filaments retain a stabilizing inter-subunit salt bridge between E168 and K62 and reveals visible density between Y167 and S61 of adjacent filament subunits, consistent with a conserved cation binding site proximal to the D-loop, as initially identified in vertebrate skeletal muscle actin filaments. These results favor a mechanism in which weak D-loop interactions compromise TgAct1 subunit incorporation at filament ends, while minimally affecting overall subunit interactions within filaments.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39706262</pmid><doi>10.1016/j.jbc.2024.108101</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2024-12, p.108101, Article 108101
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_proquest_miscellaneous_3147973012
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
title Bending stiffness of Toxoplasma gondii actin filaments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bending%20stiffness%20of%20Toxoplasma%20gondii%20actin%20filaments&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Cao,%20Wenxiang&rft.date=2024-12-18&rft.spage=108101&rft.pages=108101-&rft.artnum=108101&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.108101&rft_dat=%3Cproquest_cross%3E3147973012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147973012&rft_id=info:pmid/39706262&rft_els_id=S0021925824026036&rfr_iscdi=true