Umbrella Sampling MD Simulations for Retention Prediction in Peptide Reversed-phase Liquid Chromatography

Reversed-phase liquid chromatography (RPLC) is an essential tool for separating complex mixtures such as proteolytic digests in bottom-up proteomics. There is growing interest in methods that can predict the RPLC retention behavior of peptides and other analytes. Already, existing algorithms provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2025-01, Vol.97 (1), p.828-837
Hauptverfasser: Scrosati, Pablo M., MacKay-Barr, Evelyn H., Konermann, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 837
container_issue 1
container_start_page 828
container_title Analytical chemistry (Washington)
container_volume 97
creator Scrosati, Pablo M.
MacKay-Barr, Evelyn H.
Konermann, Lars
description Reversed-phase liquid chromatography (RPLC) is an essential tool for separating complex mixtures such as proteolytic digests in bottom-up proteomics. There is growing interest in methods that can predict the RPLC retention behavior of peptides and other analytes. Already, existing algorithms provide excellent performance based on empirical rules or large sets of RPLC training data. Here we explored a new type of retention prediction strategy that relies on first-principles modeling of peptide interactions with a C18 stationary phase. We recently demonstrated that molecular dynamics (MD) simulations can provide atomistic insights into the behavior of peptides under RPLC conditions (Anal. Chem. 2023, 95, 3892). However, the current work found that it is problematic to use conventional MD data for retention prediction, evident from a poor correlation between experimental retention times and MD-generated “fraction bound” values. We thus turned to umbrella sampling MD, a complementary technique that has previously been applied to probe noncovalent contacts in other types of systems. By restraining the peptide dynamic motions at various positions inside a C18-lined pore, we determined the free energy of the system as a function of peptide-stationary phase distance. ΔG binding values determined in this way under various mobile phase conditions were linearly correlated with experimental retention times of tryptic test peptides. This work opens retention prediction avenues for novel types of stationary and mobile phases, and for peptides (or other analytes) having arbitrary chemical properties, without the need for RPLC reference data. Umbrella sampling can be used as a stand-alone tool, or it may serve to enhance existing retention prediction algorithms.
doi_str_mv 10.1021/acs.analchem.4c05428
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3147695193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3160106278</sourcerecordid><originalsourceid>FETCH-LOGICAL-a255t-f1c5df6c64e61b38c0928a902e5ee07bbdec297014ba3ec3a294b1041a662fc3</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EomX5BwhF4sIlZWwnTnJEZZWKQLScI8eZtEbZsBOk_nscuhw4cLJH871nzzxCLihMKDB6I5WdyFqWaoXVJFAQBiw-IGMaMvBFHLNDMgYA7rMIYEROrP0EoBSoOCYjnkQQ8oiPif6oMoNlKb25rNpS10vv5c6b66ovZaeb2npFY7x37LAeSu_NYK7V71W7CttO5-j632gs5n67kha9mf7qde5NV6apZNcsjWxX6zNyVMjS4vn2PCWLh_vF9MmfvT4-T29nvmRh2PkFVWFeCCUCFDTjsYKExTIBhiEiRFmWo2Lu-zTIJEfFJUuCjEJApRCsUPyUXG9sW9N89Wi7tNJWDRPW2PQ25TSIRBLShDv06g_62fTGrXSgBFAQLIodFWwoZRprDRZpa3QlzTqlkA5JpC6JdJdEuk3CyS635n1WYb4X7VbvANgAg3z_8L-eP4sMmNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3160106278</pqid></control><display><type>article</type><title>Umbrella Sampling MD Simulations for Retention Prediction in Peptide Reversed-phase Liquid Chromatography</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Scrosati, Pablo M. ; MacKay-Barr, Evelyn H. ; Konermann, Lars</creator><creatorcontrib>Scrosati, Pablo M. ; MacKay-Barr, Evelyn H. ; Konermann, Lars</creatorcontrib><description>Reversed-phase liquid chromatography (RPLC) is an essential tool for separating complex mixtures such as proteolytic digests in bottom-up proteomics. There is growing interest in methods that can predict the RPLC retention behavior of peptides and other analytes. Already, existing algorithms provide excellent performance based on empirical rules or large sets of RPLC training data. Here we explored a new type of retention prediction strategy that relies on first-principles modeling of peptide interactions with a C18 stationary phase. We recently demonstrated that molecular dynamics (MD) simulations can provide atomistic insights into the behavior of peptides under RPLC conditions (Anal. Chem. 2023, 95, 3892). However, the current work found that it is problematic to use conventional MD data for retention prediction, evident from a poor correlation between experimental retention times and MD-generated “fraction bound” values. We thus turned to umbrella sampling MD, a complementary technique that has previously been applied to probe noncovalent contacts in other types of systems. By restraining the peptide dynamic motions at various positions inside a C18-lined pore, we determined the free energy of the system as a function of peptide-stationary phase distance. ΔG binding values determined in this way under various mobile phase conditions were linearly correlated with experimental retention times of tryptic test peptides. This work opens retention prediction avenues for novel types of stationary and mobile phases, and for peptides (or other analytes) having arbitrary chemical properties, without the need for RPLC reference data. Umbrella sampling can be used as a stand-alone tool, or it may serve to enhance existing retention prediction algorithms.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.4c05428</identifier><identifier>PMID: 39705373</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Chemical properties ; Chromatography ; Chromatography, Reverse-Phase ; Data analysis ; First principles ; Free energy ; Liquid chromatography ; Molecular dynamics ; Molecular Dynamics Simulation ; Peptides ; Peptides - analysis ; Peptides - chemistry ; Predictions ; Proteolysis ; Proteomics ; Retention ; Sampling ; Stationary phase ; Thermodynamics</subject><ispartof>Analytical chemistry (Washington), 2025-01, Vol.97 (1), p.828-837</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 14, 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a255t-f1c5df6c64e61b38c0928a902e5ee07bbdec297014ba3ec3a294b1041a662fc3</cites><orcidid>0000-0002-5283-3165 ; 0000-0001-7137-6871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.4c05428$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.4c05428$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39705373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scrosati, Pablo M.</creatorcontrib><creatorcontrib>MacKay-Barr, Evelyn H.</creatorcontrib><creatorcontrib>Konermann, Lars</creatorcontrib><title>Umbrella Sampling MD Simulations for Retention Prediction in Peptide Reversed-phase Liquid Chromatography</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Reversed-phase liquid chromatography (RPLC) is an essential tool for separating complex mixtures such as proteolytic digests in bottom-up proteomics. There is growing interest in methods that can predict the RPLC retention behavior of peptides and other analytes. Already, existing algorithms provide excellent performance based on empirical rules or large sets of RPLC training data. Here we explored a new type of retention prediction strategy that relies on first-principles modeling of peptide interactions with a C18 stationary phase. We recently demonstrated that molecular dynamics (MD) simulations can provide atomistic insights into the behavior of peptides under RPLC conditions (Anal. Chem. 2023, 95, 3892). However, the current work found that it is problematic to use conventional MD data for retention prediction, evident from a poor correlation between experimental retention times and MD-generated “fraction bound” values. We thus turned to umbrella sampling MD, a complementary technique that has previously been applied to probe noncovalent contacts in other types of systems. By restraining the peptide dynamic motions at various positions inside a C18-lined pore, we determined the free energy of the system as a function of peptide-stationary phase distance. ΔG binding values determined in this way under various mobile phase conditions were linearly correlated with experimental retention times of tryptic test peptides. This work opens retention prediction avenues for novel types of stationary and mobile phases, and for peptides (or other analytes) having arbitrary chemical properties, without the need for RPLC reference data. Umbrella sampling can be used as a stand-alone tool, or it may serve to enhance existing retention prediction algorithms.</description><subject>Algorithms</subject><subject>Chemical properties</subject><subject>Chromatography</subject><subject>Chromatography, Reverse-Phase</subject><subject>Data analysis</subject><subject>First principles</subject><subject>Free energy</subject><subject>Liquid chromatography</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><subject>Peptides - analysis</subject><subject>Peptides - chemistry</subject><subject>Predictions</subject><subject>Proteolysis</subject><subject>Proteomics</subject><subject>Retention</subject><subject>Sampling</subject><subject>Stationary phase</subject><subject>Thermodynamics</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUlPwzAQhS0EomX5BwhF4sIlZWwnTnJEZZWKQLScI8eZtEbZsBOk_nscuhw4cLJH871nzzxCLihMKDB6I5WdyFqWaoXVJFAQBiw-IGMaMvBFHLNDMgYA7rMIYEROrP0EoBSoOCYjnkQQ8oiPif6oMoNlKb25rNpS10vv5c6b66ovZaeb2npFY7x37LAeSu_NYK7V71W7CttO5-j632gs5n67kha9mf7qde5NV6apZNcsjWxX6zNyVMjS4vn2PCWLh_vF9MmfvT4-T29nvmRh2PkFVWFeCCUCFDTjsYKExTIBhiEiRFmWo2Lu-zTIJEfFJUuCjEJApRCsUPyUXG9sW9N89Wi7tNJWDRPW2PQ25TSIRBLShDv06g_62fTGrXSgBFAQLIodFWwoZRprDRZpa3QlzTqlkA5JpC6JdJdEuk3CyS635n1WYb4X7VbvANgAg3z_8L-eP4sMmNA</recordid><startdate>20250114</startdate><enddate>20250114</enddate><creator>Scrosati, Pablo M.</creator><creator>MacKay-Barr, Evelyn H.</creator><creator>Konermann, Lars</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5283-3165</orcidid><orcidid>https://orcid.org/0000-0001-7137-6871</orcidid></search><sort><creationdate>20250114</creationdate><title>Umbrella Sampling MD Simulations for Retention Prediction in Peptide Reversed-phase Liquid Chromatography</title><author>Scrosati, Pablo M. ; MacKay-Barr, Evelyn H. ; Konermann, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a255t-f1c5df6c64e61b38c0928a902e5ee07bbdec297014ba3ec3a294b1041a662fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Chemical properties</topic><topic>Chromatography</topic><topic>Chromatography, Reverse-Phase</topic><topic>Data analysis</topic><topic>First principles</topic><topic>Free energy</topic><topic>Liquid chromatography</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><topic>Peptides - analysis</topic><topic>Peptides - chemistry</topic><topic>Predictions</topic><topic>Proteolysis</topic><topic>Proteomics</topic><topic>Retention</topic><topic>Sampling</topic><topic>Stationary phase</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scrosati, Pablo M.</creatorcontrib><creatorcontrib>MacKay-Barr, Evelyn H.</creatorcontrib><creatorcontrib>Konermann, Lars</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scrosati, Pablo M.</au><au>MacKay-Barr, Evelyn H.</au><au>Konermann, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Umbrella Sampling MD Simulations for Retention Prediction in Peptide Reversed-phase Liquid Chromatography</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2025-01-14</date><risdate>2025</risdate><volume>97</volume><issue>1</issue><spage>828</spage><epage>837</epage><pages>828-837</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Reversed-phase liquid chromatography (RPLC) is an essential tool for separating complex mixtures such as proteolytic digests in bottom-up proteomics. There is growing interest in methods that can predict the RPLC retention behavior of peptides and other analytes. Already, existing algorithms provide excellent performance based on empirical rules or large sets of RPLC training data. Here we explored a new type of retention prediction strategy that relies on first-principles modeling of peptide interactions with a C18 stationary phase. We recently demonstrated that molecular dynamics (MD) simulations can provide atomistic insights into the behavior of peptides under RPLC conditions (Anal. Chem. 2023, 95, 3892). However, the current work found that it is problematic to use conventional MD data for retention prediction, evident from a poor correlation between experimental retention times and MD-generated “fraction bound” values. We thus turned to umbrella sampling MD, a complementary technique that has previously been applied to probe noncovalent contacts in other types of systems. By restraining the peptide dynamic motions at various positions inside a C18-lined pore, we determined the free energy of the system as a function of peptide-stationary phase distance. ΔG binding values determined in this way under various mobile phase conditions were linearly correlated with experimental retention times of tryptic test peptides. This work opens retention prediction avenues for novel types of stationary and mobile phases, and for peptides (or other analytes) having arbitrary chemical properties, without the need for RPLC reference data. Umbrella sampling can be used as a stand-alone tool, or it may serve to enhance existing retention prediction algorithms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39705373</pmid><doi>10.1021/acs.analchem.4c05428</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5283-3165</orcidid><orcidid>https://orcid.org/0000-0001-7137-6871</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2025-01, Vol.97 (1), p.828-837
issn 0003-2700
1520-6882
1520-6882
language eng
recordid cdi_proquest_miscellaneous_3147695193
source MEDLINE; American Chemical Society Journals
subjects Algorithms
Chemical properties
Chromatography
Chromatography, Reverse-Phase
Data analysis
First principles
Free energy
Liquid chromatography
Molecular dynamics
Molecular Dynamics Simulation
Peptides
Peptides - analysis
Peptides - chemistry
Predictions
Proteolysis
Proteomics
Retention
Sampling
Stationary phase
Thermodynamics
title Umbrella Sampling MD Simulations for Retention Prediction in Peptide Reversed-phase Liquid Chromatography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Umbrella%20Sampling%20MD%20Simulations%20for%20Retention%20Prediction%20in%20Peptide%20Reversed-phase%20Liquid%20Chromatography&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Scrosati,%20Pablo%20M.&rft.date=2025-01-14&rft.volume=97&rft.issue=1&rft.spage=828&rft.epage=837&rft.pages=828-837&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.4c05428&rft_dat=%3Cproquest_cross%3E3160106278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3160106278&rft_id=info:pmid/39705373&rfr_iscdi=true