Computational assessment of measurable residual disease in acute myeloid leukemia using mixture models

Background The proportion of residual leukemic blasts after chemotherapy assessed by multiparameter flow cytometry, is an important prognostic factor for the risk of relapse and overall survival in acute myeloid leukemia (AML). This measurable residual disease (MRD) is used in clinical trials to str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications medicine 2024-12, Vol.4 (1), p.271-9, Article 271
Hauptverfasser: Mocking, Tim R., Kelder, Angèle, Reuvekamp, Tom, Ngai, Lok Lam, Rutten, Philip, Gradowska, Patrycja, van de Loosdrecht, Arjan A., Cloos, Jacqueline, Bachas, Costa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 271
container_title Communications medicine
container_volume 4
creator Mocking, Tim R.
Kelder, Angèle
Reuvekamp, Tom
Ngai, Lok Lam
Rutten, Philip
Gradowska, Patrycja
van de Loosdrecht, Arjan A.
Cloos, Jacqueline
Bachas, Costa
description Background The proportion of residual leukemic blasts after chemotherapy assessed by multiparameter flow cytometry, is an important prognostic factor for the risk of relapse and overall survival in acute myeloid leukemia (AML). This measurable residual disease (MRD) is used in clinical trials to stratify patients for more or less intensive consolidation therapy. However, an objective and reproducible analysis method to assess MRD status from flow cytometry data is lacking, yet is highly anticipated for broader implementation of MRD testing. Methods We propose a computational pipeline based on Gaussian mixture modeling that allows a fully automated assessment of MRD status while remaining completely interpretable for clinical diagnostic experts. Our pipeline requires limited training data, which makes it easily transferable to other medical centers and cytometry platforms. Results We identify all healthy and leukemic immature myeloid cells in with high concordance (Spearman’s Rho = 0.974) and classification performance (median F -score = 0.861) compared to manual analysis. Using control samples ( n  = 18), we calculate a computational MRD percentage with high concordance to expert gating (Spearman’s rho = 0.823) and predict MRD status in a cohort of 35 AML follow-up measurements with high accuracy (97%). Conclusions We demonstrate that our pipeline provides a powerful tool for fast (~3 s) and objective automated MRD assessment in AML. Plain Language Summary Cancer cells can be targeted with intensive chemotherapy in patients with acute myeloid leukemia (a type of blood cell cancer). However, disease can return after treatment due to the survival of cancer cells in the bone marrow. Identifying these cells is relevant to decide on future treatment options. However, this analysis is still performed manually by looking at a series of graphs to identify cancer and healthy cells. This process is labor-intensive, and results can differ based on the person performing the analysis. In this study, we demonstrate that this process can be automated using a computer algorithm (calculations), cutting the analysis time down from thirty minutes to three seconds. We anticipate that this can improve the accessibility and accuracy of diagnosing acute myeloid leukemia. Mocking et al. address the need for enhanced detection of measurable residual disease (MRD) in leukemia utilizing flow cytometry and computational methods. Their fully automated assessment of MRD status produces
doi_str_mv 10.1038/s43856-024-00700-x
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_3147484398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7f4b7758c1cb4b5f80f3860d2a55c52e</doaj_id><sourcerecordid>3147484398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-45e12cee5be553b300b06c81eef45d003f377fa9b983c1f4e790caa4c2e179153</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7jLuH_AgAS9eWitfne6jDH4sLHhR8BbS6cqQsbszJh2Y_fdmt9dVPHiqouqpNy95CXnJ4C0D0b3LUnSqbYDLBkADNOcn5JJrAU3byu9P_-ovyFXORwDguu1lB8_Jheg1cKXUJfH7OJ_KatcQFztRmzPmPOOy0ujpjDaXZIcJacIcxlKJMeQ6RRoWal1Zkc63OMUw0gnLD5yDpSWH5UDncF5Lqus44pRfkGfeThmvHuqOfPv44ev-c3Pz5dP1_v1N40Tbro1UyLhDVAMqJQYBMEDrOobopRoBhBdae9sPfScc8xJ1D85a6Tgy3TMlduR60x2jPZpTCrNNtybaYO4HMR2MTWtwExrt5aC16hxzgxyU78CLroWRW6Wc4li13mxapxR_FsyrmUN2OE12wViyEUxq2UlRvezI63_QYyypfuhG8Y6x9s4c3yiXYs4J_aNBBuYuVLOFamqo5j5Uc65Hrx6kyzDj-HjyO8IKiA3IdbUcMP15-z-yvwCEG64t</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147281165</pqid></control><display><type>article</type><title>Computational assessment of measurable residual disease in acute myeloid leukemia using mixture models</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><creator>Mocking, Tim R. ; Kelder, Angèle ; Reuvekamp, Tom ; Ngai, Lok Lam ; Rutten, Philip ; Gradowska, Patrycja ; van de Loosdrecht, Arjan A. ; Cloos, Jacqueline ; Bachas, Costa</creator><creatorcontrib>Mocking, Tim R. ; Kelder, Angèle ; Reuvekamp, Tom ; Ngai, Lok Lam ; Rutten, Philip ; Gradowska, Patrycja ; van de Loosdrecht, Arjan A. ; Cloos, Jacqueline ; Bachas, Costa</creatorcontrib><description>Background The proportion of residual leukemic blasts after chemotherapy assessed by multiparameter flow cytometry, is an important prognostic factor for the risk of relapse and overall survival in acute myeloid leukemia (AML). This measurable residual disease (MRD) is used in clinical trials to stratify patients for more or less intensive consolidation therapy. However, an objective and reproducible analysis method to assess MRD status from flow cytometry data is lacking, yet is highly anticipated for broader implementation of MRD testing. Methods We propose a computational pipeline based on Gaussian mixture modeling that allows a fully automated assessment of MRD status while remaining completely interpretable for clinical diagnostic experts. Our pipeline requires limited training data, which makes it easily transferable to other medical centers and cytometry platforms. Results We identify all healthy and leukemic immature myeloid cells in with high concordance (Spearman’s Rho = 0.974) and classification performance (median F -score = 0.861) compared to manual analysis. Using control samples ( n  = 18), we calculate a computational MRD percentage with high concordance to expert gating (Spearman’s rho = 0.823) and predict MRD status in a cohort of 35 AML follow-up measurements with high accuracy (97%). Conclusions We demonstrate that our pipeline provides a powerful tool for fast (~3 s) and objective automated MRD assessment in AML. Plain Language Summary Cancer cells can be targeted with intensive chemotherapy in patients with acute myeloid leukemia (a type of blood cell cancer). However, disease can return after treatment due to the survival of cancer cells in the bone marrow. Identifying these cells is relevant to decide on future treatment options. However, this analysis is still performed manually by looking at a series of graphs to identify cancer and healthy cells. This process is labor-intensive, and results can differ based on the person performing the analysis. In this study, we demonstrate that this process can be automated using a computer algorithm (calculations), cutting the analysis time down from thirty minutes to three seconds. We anticipate that this can improve the accessibility and accuracy of diagnosing acute myeloid leukemia. Mocking et al. address the need for enhanced detection of measurable residual disease (MRD) in leukemia utilizing flow cytometry and computational methods. Their fully automated assessment of MRD status produces interpretable results for clinical diagnostic experts.</description><identifier>ISSN: 2730-664X</identifier><identifier>EISSN: 2730-664X</identifier><identifier>DOI: 10.1038/s43856-024-00700-x</identifier><identifier>PMID: 39702555</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 692/4028/67/1990/283/1897 ; Algorithms ; Artificial intelligence ; Automation ; Bone marrow ; Clustering ; Datasets ; Flow cytometry ; Leukemia ; Medicine ; Medicine &amp; Public Health ; Patients ; Protein expression</subject><ispartof>Communications medicine, 2024-12, Vol.4 (1), p.271-9, Article 271</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-45e12cee5be553b300b06c81eef45d003f377fa9b983c1f4e790caa4c2e179153</cites><orcidid>0000-0001-5983-6193 ; 0000-0001-9170-4131 ; 0000-0003-0969-3766 ; 0009-0001-1346-6606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s43856-024-00700-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s43856-024-00700-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,27911,27912,41107,42176,51563</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39702555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mocking, Tim R.</creatorcontrib><creatorcontrib>Kelder, Angèle</creatorcontrib><creatorcontrib>Reuvekamp, Tom</creatorcontrib><creatorcontrib>Ngai, Lok Lam</creatorcontrib><creatorcontrib>Rutten, Philip</creatorcontrib><creatorcontrib>Gradowska, Patrycja</creatorcontrib><creatorcontrib>van de Loosdrecht, Arjan A.</creatorcontrib><creatorcontrib>Cloos, Jacqueline</creatorcontrib><creatorcontrib>Bachas, Costa</creatorcontrib><title>Computational assessment of measurable residual disease in acute myeloid leukemia using mixture models</title><title>Communications medicine</title><addtitle>Commun Med</addtitle><addtitle>Commun Med (Lond)</addtitle><description>Background The proportion of residual leukemic blasts after chemotherapy assessed by multiparameter flow cytometry, is an important prognostic factor for the risk of relapse and overall survival in acute myeloid leukemia (AML). This measurable residual disease (MRD) is used in clinical trials to stratify patients for more or less intensive consolidation therapy. However, an objective and reproducible analysis method to assess MRD status from flow cytometry data is lacking, yet is highly anticipated for broader implementation of MRD testing. Methods We propose a computational pipeline based on Gaussian mixture modeling that allows a fully automated assessment of MRD status while remaining completely interpretable for clinical diagnostic experts. Our pipeline requires limited training data, which makes it easily transferable to other medical centers and cytometry platforms. Results We identify all healthy and leukemic immature myeloid cells in with high concordance (Spearman’s Rho = 0.974) and classification performance (median F -score = 0.861) compared to manual analysis. Using control samples ( n  = 18), we calculate a computational MRD percentage with high concordance to expert gating (Spearman’s rho = 0.823) and predict MRD status in a cohort of 35 AML follow-up measurements with high accuracy (97%). Conclusions We demonstrate that our pipeline provides a powerful tool for fast (~3 s) and objective automated MRD assessment in AML. Plain Language Summary Cancer cells can be targeted with intensive chemotherapy in patients with acute myeloid leukemia (a type of blood cell cancer). However, disease can return after treatment due to the survival of cancer cells in the bone marrow. Identifying these cells is relevant to decide on future treatment options. However, this analysis is still performed manually by looking at a series of graphs to identify cancer and healthy cells. This process is labor-intensive, and results can differ based on the person performing the analysis. In this study, we demonstrate that this process can be automated using a computer algorithm (calculations), cutting the analysis time down from thirty minutes to three seconds. We anticipate that this can improve the accessibility and accuracy of diagnosing acute myeloid leukemia. Mocking et al. address the need for enhanced detection of measurable residual disease (MRD) in leukemia utilizing flow cytometry and computational methods. Their fully automated assessment of MRD status produces interpretable results for clinical diagnostic experts.</description><subject>631/114</subject><subject>692/4028/67/1990/283/1897</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Bone marrow</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Flow cytometry</subject><subject>Leukemia</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Patients</subject><subject>Protein expression</subject><issn>2730-664X</issn><issn>2730-664X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU2LFDEQhoMo7jLuH_AgAS9eWitfne6jDH4sLHhR8BbS6cqQsbszJh2Y_fdmt9dVPHiqouqpNy95CXnJ4C0D0b3LUnSqbYDLBkADNOcn5JJrAU3byu9P_-ovyFXORwDguu1lB8_Jheg1cKXUJfH7OJ_KatcQFztRmzPmPOOy0ujpjDaXZIcJacIcxlKJMeQ6RRoWal1Zkc63OMUw0gnLD5yDpSWH5UDncF5Lqus44pRfkGfeThmvHuqOfPv44ev-c3Pz5dP1_v1N40Tbro1UyLhDVAMqJQYBMEDrOobopRoBhBdae9sPfScc8xJ1D85a6Tgy3TMlduR60x2jPZpTCrNNtybaYO4HMR2MTWtwExrt5aC16hxzgxyU78CLroWRW6Wc4li13mxapxR_FsyrmUN2OE12wViyEUxq2UlRvezI63_QYyypfuhG8Y6x9s4c3yiXYs4J_aNBBuYuVLOFamqo5j5Uc65Hrx6kyzDj-HjyO8IKiA3IdbUcMP15-z-yvwCEG64t</recordid><startdate>20241219</startdate><enddate>20241219</enddate><creator>Mocking, Tim R.</creator><creator>Kelder, Angèle</creator><creator>Reuvekamp, Tom</creator><creator>Ngai, Lok Lam</creator><creator>Rutten, Philip</creator><creator>Gradowska, Patrycja</creator><creator>van de Loosdrecht, Arjan A.</creator><creator>Cloos, Jacqueline</creator><creator>Bachas, Costa</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5983-6193</orcidid><orcidid>https://orcid.org/0000-0001-9170-4131</orcidid><orcidid>https://orcid.org/0000-0003-0969-3766</orcidid><orcidid>https://orcid.org/0009-0001-1346-6606</orcidid></search><sort><creationdate>20241219</creationdate><title>Computational assessment of measurable residual disease in acute myeloid leukemia using mixture models</title><author>Mocking, Tim R. ; Kelder, Angèle ; Reuvekamp, Tom ; Ngai, Lok Lam ; Rutten, Philip ; Gradowska, Patrycja ; van de Loosdrecht, Arjan A. ; Cloos, Jacqueline ; Bachas, Costa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-45e12cee5be553b300b06c81eef45d003f377fa9b983c1f4e790caa4c2e179153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114</topic><topic>692/4028/67/1990/283/1897</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Bone marrow</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Flow cytometry</topic><topic>Leukemia</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Patients</topic><topic>Protein expression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mocking, Tim R.</creatorcontrib><creatorcontrib>Kelder, Angèle</creatorcontrib><creatorcontrib>Reuvekamp, Tom</creatorcontrib><creatorcontrib>Ngai, Lok Lam</creatorcontrib><creatorcontrib>Rutten, Philip</creatorcontrib><creatorcontrib>Gradowska, Patrycja</creatorcontrib><creatorcontrib>van de Loosdrecht, Arjan A.</creatorcontrib><creatorcontrib>Cloos, Jacqueline</creatorcontrib><creatorcontrib>Bachas, Costa</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mocking, Tim R.</au><au>Kelder, Angèle</au><au>Reuvekamp, Tom</au><au>Ngai, Lok Lam</au><au>Rutten, Philip</au><au>Gradowska, Patrycja</au><au>van de Loosdrecht, Arjan A.</au><au>Cloos, Jacqueline</au><au>Bachas, Costa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational assessment of measurable residual disease in acute myeloid leukemia using mixture models</atitle><jtitle>Communications medicine</jtitle><stitle>Commun Med</stitle><addtitle>Commun Med (Lond)</addtitle><date>2024-12-19</date><risdate>2024</risdate><volume>4</volume><issue>1</issue><spage>271</spage><epage>9</epage><pages>271-9</pages><artnum>271</artnum><issn>2730-664X</issn><eissn>2730-664X</eissn><abstract>Background The proportion of residual leukemic blasts after chemotherapy assessed by multiparameter flow cytometry, is an important prognostic factor for the risk of relapse and overall survival in acute myeloid leukemia (AML). This measurable residual disease (MRD) is used in clinical trials to stratify patients for more or less intensive consolidation therapy. However, an objective and reproducible analysis method to assess MRD status from flow cytometry data is lacking, yet is highly anticipated for broader implementation of MRD testing. Methods We propose a computational pipeline based on Gaussian mixture modeling that allows a fully automated assessment of MRD status while remaining completely interpretable for clinical diagnostic experts. Our pipeline requires limited training data, which makes it easily transferable to other medical centers and cytometry platforms. Results We identify all healthy and leukemic immature myeloid cells in with high concordance (Spearman’s Rho = 0.974) and classification performance (median F -score = 0.861) compared to manual analysis. Using control samples ( n  = 18), we calculate a computational MRD percentage with high concordance to expert gating (Spearman’s rho = 0.823) and predict MRD status in a cohort of 35 AML follow-up measurements with high accuracy (97%). Conclusions We demonstrate that our pipeline provides a powerful tool for fast (~3 s) and objective automated MRD assessment in AML. Plain Language Summary Cancer cells can be targeted with intensive chemotherapy in patients with acute myeloid leukemia (a type of blood cell cancer). However, disease can return after treatment due to the survival of cancer cells in the bone marrow. Identifying these cells is relevant to decide on future treatment options. However, this analysis is still performed manually by looking at a series of graphs to identify cancer and healthy cells. This process is labor-intensive, and results can differ based on the person performing the analysis. In this study, we demonstrate that this process can be automated using a computer algorithm (calculations), cutting the analysis time down from thirty minutes to three seconds. We anticipate that this can improve the accessibility and accuracy of diagnosing acute myeloid leukemia. Mocking et al. address the need for enhanced detection of measurable residual disease (MRD) in leukemia utilizing flow cytometry and computational methods. Their fully automated assessment of MRD status produces interpretable results for clinical diagnostic experts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39702555</pmid><doi>10.1038/s43856-024-00700-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5983-6193</orcidid><orcidid>https://orcid.org/0000-0001-9170-4131</orcidid><orcidid>https://orcid.org/0000-0003-0969-3766</orcidid><orcidid>https://orcid.org/0009-0001-1346-6606</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2730-664X
ispartof Communications medicine, 2024-12, Vol.4 (1), p.271-9, Article 271
issn 2730-664X
2730-664X
language eng
recordid cdi_proquest_miscellaneous_3147484398
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; PubMed Central
subjects 631/114
692/4028/67/1990/283/1897
Algorithms
Artificial intelligence
Automation
Bone marrow
Clustering
Datasets
Flow cytometry
Leukemia
Medicine
Medicine & Public Health
Patients
Protein expression
title Computational assessment of measurable residual disease in acute myeloid leukemia using mixture models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20assessment%20of%20measurable%20residual%20disease%20in%20acute%20myeloid%20leukemia%20using%20mixture%20models&rft.jtitle=Communications%20medicine&rft.au=Mocking,%20Tim%20R.&rft.date=2024-12-19&rft.volume=4&rft.issue=1&rft.spage=271&rft.epage=9&rft.pages=271-9&rft.artnum=271&rft.issn=2730-664X&rft.eissn=2730-664X&rft_id=info:doi/10.1038/s43856-024-00700-x&rft_dat=%3Cproquest_doaj_%3E3147484398%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147281165&rft_id=info:pmid/39702555&rft_doaj_id=oai_doaj_org_article_7f4b7758c1cb4b5f80f3860d2a55c52e&rfr_iscdi=true