A novel skin temperature estimation system for predicting pressure injury occurrence based on continuous body sensor data: A pilot study

Pressure injury prevention is important in older patients with immobility. This requires an accurate and efficient prediction of the development of pressure injuries. We aimed to develop a method for estimating skin temperature changes due to ischemia and inflammation using temperature sensors place...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical biomechanics (Bristol) 2025-02, Vol.122, p.106413, Article 106413
Hauptverfasser: Shinkawa, Minami, Mugita, Yuko, Takahashi, Toshiaki, Haba, Daijiro, Sanada, Hiromi, Nakagami, Gojiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106413
container_title Clinical biomechanics (Bristol)
container_volume 122
creator Shinkawa, Minami
Mugita, Yuko
Takahashi, Toshiaki
Haba, Daijiro
Sanada, Hiromi
Nakagami, Gojiro
description Pressure injury prevention is important in older patients with immobility. This requires an accurate and efficient prediction of the development of pressure injuries. We aimed to develop a method for estimating skin temperature changes due to ischemia and inflammation using temperature sensors placed under bedsheets to provide an objective, non-invasive, and non-constrained risk assessment tool. This study consisted of a thermal skin simulation study and a descriptive correlation study in healthy participants. A thermal skin simulation study was conducted using a model reproducing the body surface (underwear, diaper, or wet diaper conditions) and bed environment. In a descriptive-correlational study, the participants lay supine on a mattress with a temperature sensor attached to their sacral skin. The thermal skin simulation study showed that temperature changes in the skin can be estimated under the sheets by inputting time-shifted temperature data into machine learning (R2 = 0.9967 for underwear, 0.9950 for diapers, and 0.9869 for wet diapers). It was also demonstrated that the absolute skin temperature of a healthy individual (N = 17) could be estimated with the best accuracy by inputting time-shifted data into an extra-tree regressor (R2 = 0.8145). A combination of interface pressure and temperature sensors can be used to estimate skin temperature changes. These findings contribute to the development of a skin temperature measurement method that can capture temperature changes over time in clinical settings. •Skin temperature of person on bed estimated by sensors placed under the sheet.•Thermal simulation was established to artificially reproduce skin thermal changes.•Input of time-shifted data into machine learning can estimate skin temperature.•Extra-tree regressor can estimate skin temperature with high accuracy.•This skin temperature estimation could be useful for predicting pressure injuries.
doi_str_mv 10.1016/j.clinbiomech.2024.106413
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3147482272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0268003324002456</els_id><sourcerecordid>3147482272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-6c1774fd63fd4b8040ad80026c1aaa853f1598bdb49f79a72e3fe75398c3abf33</originalsourceid><addsrcrecordid>eNqNkcuu1SAYhYnReLZHX8HgzEm33FpaZzs73pKTONExofCjbFuoQE_SN_CxpdlH49ARBL71X9ZC6BUlR0po9-ZyNJMPo48zmO9HRpio752g_BE60F4ODWWSPkYHwrq-IYTzG_Qs5wshRLBWPkU3fJCEtLw_oF8nHOI9TDj_8AEXmBdIuqwJMOTiZ118DDhvuf5gFxNeElhvig_f9mvOO-nDZU0bjsasKUEwgEedweKqNDFUdo1rxmO0G84Qcq1iddFv8QkvfooF57La7Tl64vSU4cXDeYu-vn_35fyxufv84dP5dNcY1tLSdIZKKZztuLNi7Ikg2vakLmqo1rpvuaPt0I92FIOTg5YMuAPZ8qE3XI-O81v0-lp3SfHnWpdUs88GpkkHqGMqToUUPWOSVXS4oibFnBM4taRqSdoUJWoPQl3UP0GoPQh1DaJqXz60WccZ7F_lH-crcL4CUJe995BUNn43z_oEpigb_X-0-Q1M3KMF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147482272</pqid></control><display><type>article</type><title>A novel skin temperature estimation system for predicting pressure injury occurrence based on continuous body sensor data: A pilot study</title><source>Elsevier ScienceDirect Journals</source><creator>Shinkawa, Minami ; Mugita, Yuko ; Takahashi, Toshiaki ; Haba, Daijiro ; Sanada, Hiromi ; Nakagami, Gojiro</creator><creatorcontrib>Shinkawa, Minami ; Mugita, Yuko ; Takahashi, Toshiaki ; Haba, Daijiro ; Sanada, Hiromi ; Nakagami, Gojiro</creatorcontrib><description>Pressure injury prevention is important in older patients with immobility. This requires an accurate and efficient prediction of the development of pressure injuries. We aimed to develop a method for estimating skin temperature changes due to ischemia and inflammation using temperature sensors placed under bedsheets to provide an objective, non-invasive, and non-constrained risk assessment tool. This study consisted of a thermal skin simulation study and a descriptive correlation study in healthy participants. A thermal skin simulation study was conducted using a model reproducing the body surface (underwear, diaper, or wet diaper conditions) and bed environment. In a descriptive-correlational study, the participants lay supine on a mattress with a temperature sensor attached to their sacral skin. The thermal skin simulation study showed that temperature changes in the skin can be estimated under the sheets by inputting time-shifted temperature data into machine learning (R2 = 0.9967 for underwear, 0.9950 for diapers, and 0.9869 for wet diapers). It was also demonstrated that the absolute skin temperature of a healthy individual (N = 17) could be estimated with the best accuracy by inputting time-shifted data into an extra-tree regressor (R2 = 0.8145). A combination of interface pressure and temperature sensors can be used to estimate skin temperature changes. These findings contribute to the development of a skin temperature measurement method that can capture temperature changes over time in clinical settings. •Skin temperature of person on bed estimated by sensors placed under the sheet.•Thermal simulation was established to artificially reproduce skin thermal changes.•Input of time-shifted data into machine learning can estimate skin temperature.•Extra-tree regressor can estimate skin temperature with high accuracy.•This skin temperature estimation could be useful for predicting pressure injuries.</description><identifier>ISSN: 0268-0033</identifier><identifier>ISSN: 1879-1271</identifier><identifier>EISSN: 1879-1271</identifier><identifier>DOI: 10.1016/j.clinbiomech.2024.106413</identifier><identifier>PMID: 39700538</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Heathy participant ; Non-constrained skin temperature estimation ; Non-invasive body sensor monitoring ; Pressure injury prediction ; Simulation study</subject><ispartof>Clinical biomechanics (Bristol), 2025-02, Vol.122, p.106413, Article 106413</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-6c1774fd63fd4b8040ad80026c1aaa853f1598bdb49f79a72e3fe75398c3abf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0268003324002456$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39700538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shinkawa, Minami</creatorcontrib><creatorcontrib>Mugita, Yuko</creatorcontrib><creatorcontrib>Takahashi, Toshiaki</creatorcontrib><creatorcontrib>Haba, Daijiro</creatorcontrib><creatorcontrib>Sanada, Hiromi</creatorcontrib><creatorcontrib>Nakagami, Gojiro</creatorcontrib><title>A novel skin temperature estimation system for predicting pressure injury occurrence based on continuous body sensor data: A pilot study</title><title>Clinical biomechanics (Bristol)</title><addtitle>Clin Biomech (Bristol)</addtitle><description>Pressure injury prevention is important in older patients with immobility. This requires an accurate and efficient prediction of the development of pressure injuries. We aimed to develop a method for estimating skin temperature changes due to ischemia and inflammation using temperature sensors placed under bedsheets to provide an objective, non-invasive, and non-constrained risk assessment tool. This study consisted of a thermal skin simulation study and a descriptive correlation study in healthy participants. A thermal skin simulation study was conducted using a model reproducing the body surface (underwear, diaper, or wet diaper conditions) and bed environment. In a descriptive-correlational study, the participants lay supine on a mattress with a temperature sensor attached to their sacral skin. The thermal skin simulation study showed that temperature changes in the skin can be estimated under the sheets by inputting time-shifted temperature data into machine learning (R2 = 0.9967 for underwear, 0.9950 for diapers, and 0.9869 for wet diapers). It was also demonstrated that the absolute skin temperature of a healthy individual (N = 17) could be estimated with the best accuracy by inputting time-shifted data into an extra-tree regressor (R2 = 0.8145). A combination of interface pressure and temperature sensors can be used to estimate skin temperature changes. These findings contribute to the development of a skin temperature measurement method that can capture temperature changes over time in clinical settings. •Skin temperature of person on bed estimated by sensors placed under the sheet.•Thermal simulation was established to artificially reproduce skin thermal changes.•Input of time-shifted data into machine learning can estimate skin temperature.•Extra-tree regressor can estimate skin temperature with high accuracy.•This skin temperature estimation could be useful for predicting pressure injuries.</description><subject>Heathy participant</subject><subject>Non-constrained skin temperature estimation</subject><subject>Non-invasive body sensor monitoring</subject><subject>Pressure injury prediction</subject><subject>Simulation study</subject><issn>0268-0033</issn><issn>1879-1271</issn><issn>1879-1271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqNkcuu1SAYhYnReLZHX8HgzEm33FpaZzs73pKTONExofCjbFuoQE_SN_CxpdlH49ARBL71X9ZC6BUlR0po9-ZyNJMPo48zmO9HRpio752g_BE60F4ODWWSPkYHwrq-IYTzG_Qs5wshRLBWPkU3fJCEtLw_oF8nHOI9TDj_8AEXmBdIuqwJMOTiZ118DDhvuf5gFxNeElhvig_f9mvOO-nDZU0bjsasKUEwgEedweKqNDFUdo1rxmO0G84Qcq1iddFv8QkvfooF57La7Tl64vSU4cXDeYu-vn_35fyxufv84dP5dNcY1tLSdIZKKZztuLNi7Ikg2vakLmqo1rpvuaPt0I92FIOTg5YMuAPZ8qE3XI-O81v0-lp3SfHnWpdUs88GpkkHqGMqToUUPWOSVXS4oibFnBM4taRqSdoUJWoPQl3UP0GoPQh1DaJqXz60WccZ7F_lH-crcL4CUJe995BUNn43z_oEpigb_X-0-Q1M3KMF</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Shinkawa, Minami</creator><creator>Mugita, Yuko</creator><creator>Takahashi, Toshiaki</creator><creator>Haba, Daijiro</creator><creator>Sanada, Hiromi</creator><creator>Nakagami, Gojiro</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250201</creationdate><title>A novel skin temperature estimation system for predicting pressure injury occurrence based on continuous body sensor data: A pilot study</title><author>Shinkawa, Minami ; Mugita, Yuko ; Takahashi, Toshiaki ; Haba, Daijiro ; Sanada, Hiromi ; Nakagami, Gojiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-6c1774fd63fd4b8040ad80026c1aaa853f1598bdb49f79a72e3fe75398c3abf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Heathy participant</topic><topic>Non-constrained skin temperature estimation</topic><topic>Non-invasive body sensor monitoring</topic><topic>Pressure injury prediction</topic><topic>Simulation study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinkawa, Minami</creatorcontrib><creatorcontrib>Mugita, Yuko</creatorcontrib><creatorcontrib>Takahashi, Toshiaki</creatorcontrib><creatorcontrib>Haba, Daijiro</creatorcontrib><creatorcontrib>Sanada, Hiromi</creatorcontrib><creatorcontrib>Nakagami, Gojiro</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical biomechanics (Bristol)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shinkawa, Minami</au><au>Mugita, Yuko</au><au>Takahashi, Toshiaki</au><au>Haba, Daijiro</au><au>Sanada, Hiromi</au><au>Nakagami, Gojiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel skin temperature estimation system for predicting pressure injury occurrence based on continuous body sensor data: A pilot study</atitle><jtitle>Clinical biomechanics (Bristol)</jtitle><addtitle>Clin Biomech (Bristol)</addtitle><date>2025-02-01</date><risdate>2025</risdate><volume>122</volume><spage>106413</spage><pages>106413-</pages><artnum>106413</artnum><issn>0268-0033</issn><issn>1879-1271</issn><eissn>1879-1271</eissn><abstract>Pressure injury prevention is important in older patients with immobility. This requires an accurate and efficient prediction of the development of pressure injuries. We aimed to develop a method for estimating skin temperature changes due to ischemia and inflammation using temperature sensors placed under bedsheets to provide an objective, non-invasive, and non-constrained risk assessment tool. This study consisted of a thermal skin simulation study and a descriptive correlation study in healthy participants. A thermal skin simulation study was conducted using a model reproducing the body surface (underwear, diaper, or wet diaper conditions) and bed environment. In a descriptive-correlational study, the participants lay supine on a mattress with a temperature sensor attached to their sacral skin. The thermal skin simulation study showed that temperature changes in the skin can be estimated under the sheets by inputting time-shifted temperature data into machine learning (R2 = 0.9967 for underwear, 0.9950 for diapers, and 0.9869 for wet diapers). It was also demonstrated that the absolute skin temperature of a healthy individual (N = 17) could be estimated with the best accuracy by inputting time-shifted data into an extra-tree regressor (R2 = 0.8145). A combination of interface pressure and temperature sensors can be used to estimate skin temperature changes. These findings contribute to the development of a skin temperature measurement method that can capture temperature changes over time in clinical settings. •Skin temperature of person on bed estimated by sensors placed under the sheet.•Thermal simulation was established to artificially reproduce skin thermal changes.•Input of time-shifted data into machine learning can estimate skin temperature.•Extra-tree regressor can estimate skin temperature with high accuracy.•This skin temperature estimation could be useful for predicting pressure injuries.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39700538</pmid><doi>10.1016/j.clinbiomech.2024.106413</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-0033
ispartof Clinical biomechanics (Bristol), 2025-02, Vol.122, p.106413, Article 106413
issn 0268-0033
1879-1271
1879-1271
language eng
recordid cdi_proquest_miscellaneous_3147482272
source Elsevier ScienceDirect Journals
subjects Heathy participant
Non-constrained skin temperature estimation
Non-invasive body sensor monitoring
Pressure injury prediction
Simulation study
title A novel skin temperature estimation system for predicting pressure injury occurrence based on continuous body sensor data: A pilot study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20skin%20temperature%20estimation%20system%20for%20predicting%20pressure%20injury%20occurrence%20based%20on%20continuous%20body%20sensor%20data:%20A%20pilot%20study&rft.jtitle=Clinical%20biomechanics%20(Bristol)&rft.au=Shinkawa,%20Minami&rft.date=2025-02-01&rft.volume=122&rft.spage=106413&rft.pages=106413-&rft.artnum=106413&rft.issn=0268-0033&rft.eissn=1879-1271&rft_id=info:doi/10.1016/j.clinbiomech.2024.106413&rft_dat=%3Cproquest_cross%3E3147482272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147482272&rft_id=info:pmid/39700538&rft_els_id=S0268003324002456&rfr_iscdi=true