Three-dimensional, multi-functionalized nanocellulose/alginate hydrogel for efficient and selective phosphate scavenging: Optimization, performance, and in-depth mechanisms

Challenges in developing adsorbents with sufficient phosphate (P) adsorption capacity, selectivity, and regeneration properties remain to be addressed. Herein, a multi-functionalized high-capacity nanocellulose/alginate hydrogel (La-NCF/SA-PEI [La: lanthanum, NCF: nanocellulose fiber, SA: sodium alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-12, Vol.290, p.138918
Hauptverfasser: Zhang, Shenghao, Yuan, Xingyu, Li, Mingtao, Gong, Kaiyuan, Zhou, Chunyang, Gao, Xiangpeng, Li, Mingyang, Fan, Fuqiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 138918
container_title International journal of biological macromolecules
container_volume 290
creator Zhang, Shenghao
Yuan, Xingyu
Li, Mingtao
Gong, Kaiyuan
Zhou, Chunyang
Gao, Xiangpeng
Li, Mingyang
Fan, Fuqiang
description Challenges in developing adsorbents with sufficient phosphate (P) adsorption capacity, selectivity, and regeneration properties remain to be addressed. Herein, a multi-functionalized high-capacity nanocellulose/alginate hydrogel (La-NCF/SA-PEI [La: lanthanum, NCF: nanocellulose fiber, SA: sodium alginate, PEI: polyethyleneimine]) was prepared through environmentally friendly methods. The La-NCF/SA-PEI hydrogel, featuring a 3D porous structure with interwoven functional groups (amino, quaternary ammonium, and lanthanum), demonstrated a maximum P adsorption capacity of 78.0 mg/g, exceeding most La-based hydrogel adsorbents. The kinetic and isotherm fitting results confirmed the multilayer chemisorption process. Comprehensive experimental results, instrumental analysis, and computational results revealed that the ammonium phosphate complex (NH -O-P) and the inner-sphere complex (La-O-P) formed by La(OH) dominated the selective P adsorption process. Density-functional theory (DFT) was employed to calculate the bond length between phosphate and each component of the La-NCF/SA-PEI. The calculation results revealed the double-bridge adsorption between the N (apex) atom on La-NCF/SA-PEI and the O (apex) atomic site in phosphate, including electrostatic adsorption and two hydrogen bonds (bond lengths 1.001 and 1.008 Å) between the O of PO and the H of the protonated amino group. Except the remarkable P adsorption performance (both municipal sewage and aquaculture tail water), the La-NCF/SA-PEI hydrogel's high selectivity toward P, environmental compatibility, and easy separability from water underscore its significant potential for phosphate-contaminated water remediation. The multi-functionalized La-NCF/SA-PEI demonstrate promising potential for P removal applications and advanced the development of sustainable, biomass-based adsorbents design.
doi_str_mv 10.1016/j.ijbiomac.2024.138918
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3147482252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147482252</sourcerecordid><originalsourceid>FETCH-LOGICAL-p563-79ca0c91b3918302f63f41295e2bf4e05d058a6b92e20f2dc16794be6461c1943</originalsourceid><addsrcrecordid>eNpNkElPwzAQhS0EolD4C8hHDk3rJZu5oYpNqsSl98pxxo0rLyFOKrW_iR9JyiJxmqfR995oHkJ3lMwpofliNze7ygQn1ZwRls4pLwUtz9AVLQuREEL4-T89Qdcx7kaVZ7S8RBMuCkJZxq_Q57rpAJLaOPDRBC_tDLvB9ibRg1f998YcocZe-qDA2sGGCAtpt8bLHnBzqLuwBYt16DBobZQB32PpaxzBwpiwB9w2IbbNCY9K7sGP3u0Dfm9748xRno7McAvdGOGkVzD7thuf1ND2DXagGulNdPEGXWhpI9z-zilaPz-tl6_J6v3lbfm4Stos50khlCRK0IqPjXDCdM51SpnIgFU6BZLVJCtlXgkGjGhWK5oXIq0gT3OqqEj5FN3_xLZd-Bgg9htn4ul36SEMccNpWqQlYxkb0btfdKgc1Ju2M052h81fwfwLzUSEWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147482252</pqid></control><display><type>article</type><title>Three-dimensional, multi-functionalized nanocellulose/alginate hydrogel for efficient and selective phosphate scavenging: Optimization, performance, and in-depth mechanisms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Shenghao ; Yuan, Xingyu ; Li, Mingtao ; Gong, Kaiyuan ; Zhou, Chunyang ; Gao, Xiangpeng ; Li, Mingyang ; Fan, Fuqiang</creator><creatorcontrib>Zhang, Shenghao ; Yuan, Xingyu ; Li, Mingtao ; Gong, Kaiyuan ; Zhou, Chunyang ; Gao, Xiangpeng ; Li, Mingyang ; Fan, Fuqiang</creatorcontrib><description>Challenges in developing adsorbents with sufficient phosphate (P) adsorption capacity, selectivity, and regeneration properties remain to be addressed. Herein, a multi-functionalized high-capacity nanocellulose/alginate hydrogel (La-NCF/SA-PEI [La: lanthanum, NCF: nanocellulose fiber, SA: sodium alginate, PEI: polyethyleneimine]) was prepared through environmentally friendly methods. The La-NCF/SA-PEI hydrogel, featuring a 3D porous structure with interwoven functional groups (amino, quaternary ammonium, and lanthanum), demonstrated a maximum P adsorption capacity of 78.0 mg/g, exceeding most La-based hydrogel adsorbents. The kinetic and isotherm fitting results confirmed the multilayer chemisorption process. Comprehensive experimental results, instrumental analysis, and computational results revealed that the ammonium phosphate complex (NH -O-P) and the inner-sphere complex (La-O-P) formed by La(OH) dominated the selective P adsorption process. Density-functional theory (DFT) was employed to calculate the bond length between phosphate and each component of the La-NCF/SA-PEI. The calculation results revealed the double-bridge adsorption between the N (apex) atom on La-NCF/SA-PEI and the O (apex) atomic site in phosphate, including electrostatic adsorption and two hydrogen bonds (bond lengths 1.001 and 1.008 Å) between the O of PO and the H of the protonated amino group. Except the remarkable P adsorption performance (both municipal sewage and aquaculture tail water), the La-NCF/SA-PEI hydrogel's high selectivity toward P, environmental compatibility, and easy separability from water underscore its significant potential for phosphate-contaminated water remediation. The multi-functionalized La-NCF/SA-PEI demonstrate promising potential for P removal applications and advanced the development of sustainable, biomass-based adsorbents design.</description><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.138918</identifier><identifier>PMID: 39701253</identifier><language>eng</language><publisher>Netherlands</publisher><ispartof>International journal of biological macromolecules, 2024-12, Vol.290, p.138918</ispartof><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39701253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shenghao</creatorcontrib><creatorcontrib>Yuan, Xingyu</creatorcontrib><creatorcontrib>Li, Mingtao</creatorcontrib><creatorcontrib>Gong, Kaiyuan</creatorcontrib><creatorcontrib>Zhou, Chunyang</creatorcontrib><creatorcontrib>Gao, Xiangpeng</creatorcontrib><creatorcontrib>Li, Mingyang</creatorcontrib><creatorcontrib>Fan, Fuqiang</creatorcontrib><title>Three-dimensional, multi-functionalized nanocellulose/alginate hydrogel for efficient and selective phosphate scavenging: Optimization, performance, and in-depth mechanisms</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Challenges in developing adsorbents with sufficient phosphate (P) adsorption capacity, selectivity, and regeneration properties remain to be addressed. Herein, a multi-functionalized high-capacity nanocellulose/alginate hydrogel (La-NCF/SA-PEI [La: lanthanum, NCF: nanocellulose fiber, SA: sodium alginate, PEI: polyethyleneimine]) was prepared through environmentally friendly methods. The La-NCF/SA-PEI hydrogel, featuring a 3D porous structure with interwoven functional groups (amino, quaternary ammonium, and lanthanum), demonstrated a maximum P adsorption capacity of 78.0 mg/g, exceeding most La-based hydrogel adsorbents. The kinetic and isotherm fitting results confirmed the multilayer chemisorption process. Comprehensive experimental results, instrumental analysis, and computational results revealed that the ammonium phosphate complex (NH -O-P) and the inner-sphere complex (La-O-P) formed by La(OH) dominated the selective P adsorption process. Density-functional theory (DFT) was employed to calculate the bond length between phosphate and each component of the La-NCF/SA-PEI. The calculation results revealed the double-bridge adsorption between the N (apex) atom on La-NCF/SA-PEI and the O (apex) atomic site in phosphate, including electrostatic adsorption and two hydrogen bonds (bond lengths 1.001 and 1.008 Å) between the O of PO and the H of the protonated amino group. Except the remarkable P adsorption performance (both municipal sewage and aquaculture tail water), the La-NCF/SA-PEI hydrogel's high selectivity toward P, environmental compatibility, and easy separability from water underscore its significant potential for phosphate-contaminated water remediation. The multi-functionalized La-NCF/SA-PEI demonstrate promising potential for P removal applications and advanced the development of sustainable, biomass-based adsorbents design.</description><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkElPwzAQhS0EolD4C8hHDk3rJZu5oYpNqsSl98pxxo0rLyFOKrW_iR9JyiJxmqfR995oHkJ3lMwpofliNze7ygQn1ZwRls4pLwUtz9AVLQuREEL4-T89Qdcx7kaVZ7S8RBMuCkJZxq_Q57rpAJLaOPDRBC_tDLvB9ibRg1f998YcocZe-qDA2sGGCAtpt8bLHnBzqLuwBYt16DBobZQB32PpaxzBwpiwB9w2IbbNCY9K7sGP3u0Dfm9748xRno7McAvdGOGkVzD7thuf1ND2DXagGulNdPEGXWhpI9z-zilaPz-tl6_J6v3lbfm4Stos50khlCRK0IqPjXDCdM51SpnIgFU6BZLVJCtlXgkGjGhWK5oXIq0gT3OqqEj5FN3_xLZd-Bgg9htn4ul36SEMccNpWqQlYxkb0btfdKgc1Ju2M052h81fwfwLzUSEWw</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Zhang, Shenghao</creator><creator>Yuan, Xingyu</creator><creator>Li, Mingtao</creator><creator>Gong, Kaiyuan</creator><creator>Zhou, Chunyang</creator><creator>Gao, Xiangpeng</creator><creator>Li, Mingyang</creator><creator>Fan, Fuqiang</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20241217</creationdate><title>Three-dimensional, multi-functionalized nanocellulose/alginate hydrogel for efficient and selective phosphate scavenging: Optimization, performance, and in-depth mechanisms</title><author>Zhang, Shenghao ; Yuan, Xingyu ; Li, Mingtao ; Gong, Kaiyuan ; Zhou, Chunyang ; Gao, Xiangpeng ; Li, Mingyang ; Fan, Fuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p563-79ca0c91b3918302f63f41295e2bf4e05d058a6b92e20f2dc16794be6461c1943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shenghao</creatorcontrib><creatorcontrib>Yuan, Xingyu</creatorcontrib><creatorcontrib>Li, Mingtao</creatorcontrib><creatorcontrib>Gong, Kaiyuan</creatorcontrib><creatorcontrib>Zhou, Chunyang</creatorcontrib><creatorcontrib>Gao, Xiangpeng</creatorcontrib><creatorcontrib>Li, Mingyang</creatorcontrib><creatorcontrib>Fan, Fuqiang</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shenghao</au><au>Yuan, Xingyu</au><au>Li, Mingtao</au><au>Gong, Kaiyuan</au><au>Zhou, Chunyang</au><au>Gao, Xiangpeng</au><au>Li, Mingyang</au><au>Fan, Fuqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional, multi-functionalized nanocellulose/alginate hydrogel for efficient and selective phosphate scavenging: Optimization, performance, and in-depth mechanisms</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-12-17</date><risdate>2024</risdate><volume>290</volume><spage>138918</spage><pages>138918-</pages><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>Challenges in developing adsorbents with sufficient phosphate (P) adsorption capacity, selectivity, and regeneration properties remain to be addressed. Herein, a multi-functionalized high-capacity nanocellulose/alginate hydrogel (La-NCF/SA-PEI [La: lanthanum, NCF: nanocellulose fiber, SA: sodium alginate, PEI: polyethyleneimine]) was prepared through environmentally friendly methods. The La-NCF/SA-PEI hydrogel, featuring a 3D porous structure with interwoven functional groups (amino, quaternary ammonium, and lanthanum), demonstrated a maximum P adsorption capacity of 78.0 mg/g, exceeding most La-based hydrogel adsorbents. The kinetic and isotherm fitting results confirmed the multilayer chemisorption process. Comprehensive experimental results, instrumental analysis, and computational results revealed that the ammonium phosphate complex (NH -O-P) and the inner-sphere complex (La-O-P) formed by La(OH) dominated the selective P adsorption process. Density-functional theory (DFT) was employed to calculate the bond length between phosphate and each component of the La-NCF/SA-PEI. The calculation results revealed the double-bridge adsorption between the N (apex) atom on La-NCF/SA-PEI and the O (apex) atomic site in phosphate, including electrostatic adsorption and two hydrogen bonds (bond lengths 1.001 and 1.008 Å) between the O of PO and the H of the protonated amino group. Except the remarkable P adsorption performance (both municipal sewage and aquaculture tail water), the La-NCF/SA-PEI hydrogel's high selectivity toward P, environmental compatibility, and easy separability from water underscore its significant potential for phosphate-contaminated water remediation. The multi-functionalized La-NCF/SA-PEI demonstrate promising potential for P removal applications and advanced the development of sustainable, biomass-based adsorbents design.</abstract><cop>Netherlands</cop><pmid>39701253</pmid><doi>10.1016/j.ijbiomac.2024.138918</doi></addata></record>
fulltext fulltext
identifier ISSN: 1879-0003
ispartof International journal of biological macromolecules, 2024-12, Vol.290, p.138918
issn 1879-0003
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3147482252
source Elsevier ScienceDirect Journals Complete
title Three-dimensional, multi-functionalized nanocellulose/alginate hydrogel for efficient and selective phosphate scavenging: Optimization, performance, and in-depth mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional,%20multi-functionalized%20nanocellulose/alginate%20hydrogel%20for%20efficient%20and%20selective%20phosphate%20scavenging:%20Optimization,%20performance,%20and%20in-depth%20mechanisms&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Zhang,%20Shenghao&rft.date=2024-12-17&rft.volume=290&rft.spage=138918&rft.pages=138918-&rft.issn=1879-0003&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.138918&rft_dat=%3Cproquest_pubme%3E3147482252%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147482252&rft_id=info:pmid/39701253&rfr_iscdi=true