Machine learning models for diagnosis and risk prediction in eating disorders, depression, and alcohol use disorder

Early diagnosis and treatment of mental illnesses is hampered by the lack of reliable markers. This study used machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD). Case-control samples (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of affective disorders 2024-12
Hauptverfasser: Zhang, Zuo, Robinson, Lauren, Whelan, Robert, Jollans, Lee, Wang, Zijian, Nees, Frauke, Chu, Congying, Bobou, Marina, Du, Dongping, Cristea, Ilinca, Banaschewski, Tobias, Barker, Gareth J., Bokde, Arun L.W., Grigis, Antoine, Garavan, Hugh, Heinz, Andreas, Brühl, Rüdiger, Martinot, Jean-Luc, Martinot, Marie-Laure Paillère, Artiges, Eric, Orfanos, Dimitri Papadopoulos, Poustka, Luise, Hohmann, Sarah, Millenet, Sabina, Fröhner, Juliane H., Smolka, Michael N., Vaidya, Nilakshi, Walter, Henrik, Winterer, Jeanne, Broulidakis, M. John, van Noort, Betteke Maria, Stringaris, Argyris, Penttilä, Jani, Grimmer, Yvonne, Insensee, Corinna, Becker, Andreas, Zhang, Yuning, King, Sinead, Sinclair, Julia, Schumann, Gunter, Schmidt, Ulrike, Desrivières, Sylvane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of affective disorders
container_volume
creator Zhang, Zuo
Robinson, Lauren
Whelan, Robert
Jollans, Lee
Wang, Zijian
Nees, Frauke
Chu, Congying
Bobou, Marina
Du, Dongping
Cristea, Ilinca
Banaschewski, Tobias
Barker, Gareth J.
Bokde, Arun L.W.
Grigis, Antoine
Garavan, Hugh
Heinz, Andreas
Brühl, Rüdiger
Martinot, Jean-Luc
Martinot, Marie-Laure Paillère
Artiges, Eric
Orfanos, Dimitri Papadopoulos
Poustka, Luise
Hohmann, Sarah
Millenet, Sabina
Fröhner, Juliane H.
Smolka, Michael N.
Vaidya, Nilakshi
Walter, Henrik
Winterer, Jeanne
Broulidakis, M. John
van Noort, Betteke Maria
Stringaris, Argyris
Penttilä, Jani
Grimmer, Yvonne
Insensee, Corinna
Becker, Andreas
Zhang, Yuning
King, Sinead
Sinclair, Julia
Schumann, Gunter
Schmidt, Ulrike
Desrivières, Sylvane
description Early diagnosis and treatment of mental illnesses is hampered by the lack of reliable markers. This study used machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD). Case-control samples (aged 18–25 years), including participants with Anorexia Nervosa (AN), Bulimia Nervosa (BN), MDD, AUD, and matched controls, were used for diagnostic classification. For risk prediction, we used a longitudinal population-based sample (IMAGEN study), assessing adolescents at ages 14, 16 and 19. Regularized logistic regression models incorporated broad data domains spanning psychopathology, personality, cognition, substance use, and environment. The classification of EDs was highly accurate, even when excluding body mass index from the analysis. The area under the receiver operating characteristic curves (AUC-ROC [95 % CI]) reached 0.92 [0.86–0.97] for AN and 0.91 [0.85–0.96] for BN. The classification accuracies for MDD (0.91 [0.88–0.94]) and AUD (0.80 [0.74–0.85]) were also high. The models demonstrated high transdiagnostic potential, as those trained for EDs were also accurate in classifying AUD and MDD from healthy controls, and vice versa (AUC-ROCs, 0.75–0.93). Shared predictors, such as neuroticism, hopelessness, and symptoms of attention-deficit/hyperactivity disorder, were identified as reliable classifiers. In the longitudinal population sample, the models exhibited moderate performance in predicting the development of future ED symptoms (0.71 [0.67–0.75]), depressive symptoms (0.64 [0.60–0.68]), and harmful drinking (0.67 [0.64–0.70]). Our findings demonstrate the potential of combining multi-domain data for precise diagnostic and risk prediction applications in psychiatry. •Psychosocial data and machine-learning models accurately classify psychiatric patients from controls.•Neuroticism, hopelessness, and ADHD symptoms are transdiagnostic markers.•BMI information is not needed to for accurate classification of Anorexia Nervosa.•Development of symptoms at age 16/19y can be predicted based on data from 14y.
doi_str_mv 10.1016/j.jad.2024.12.053
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3147481560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016503272402041X</els_id><sourcerecordid>3147481560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2483-715fb801c0b10018dfdbb43d208adec62155ebe6c95aa3183220bbc36a6b62373</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rj6A7xIjh6221TSSfciCLL4BSte9BzSSfVMxp5kTPUs-O_NOOugF091qOd9q-Bh7DmIFgSYV9t260IrhexakK3Q6gFbge5VIzX0D9mqMroRSvYX7AnRVghhrnvxmF2oOqAzesXos_ObmJDP6EqKac13OeBMfMqFh-jWKVMk7lLgJdJ3vi8Yol9iTjwmjm45RkKkXAIWuuIBK0FU91e_Q272eZNnfiA8Y0_Zo8nNhM_u5yX79v7d15uPze2XD59u3t42XnaDanrQ0zgI8GIEIWAIUxjHTgUpBhfQGwla44jGX2vnFAxKSjGOXhlnRiNVry7Zm1Pv_jDuMHhMS3Gz3Ze4c-WnzS7afzcpbuw639neQC8HUwte3heU_OOAtNhdJI_z7BLmA1kFXd8NoI2oKJxQXzJRwel8BoQ9yrJbW2XZoywL0lZZNfPi7__OiT92KvD6BFQheBexWPIRk68KCvrFhhz_U_8LPQCncg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147481560</pqid></control><display><type>article</type><title>Machine learning models for diagnosis and risk prediction in eating disorders, depression, and alcohol use disorder</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Zuo ; Robinson, Lauren ; Whelan, Robert ; Jollans, Lee ; Wang, Zijian ; Nees, Frauke ; Chu, Congying ; Bobou, Marina ; Du, Dongping ; Cristea, Ilinca ; Banaschewski, Tobias ; Barker, Gareth J. ; Bokde, Arun L.W. ; Grigis, Antoine ; Garavan, Hugh ; Heinz, Andreas ; Brühl, Rüdiger ; Martinot, Jean-Luc ; Martinot, Marie-Laure Paillère ; Artiges, Eric ; Orfanos, Dimitri Papadopoulos ; Poustka, Luise ; Hohmann, Sarah ; Millenet, Sabina ; Fröhner, Juliane H. ; Smolka, Michael N. ; Vaidya, Nilakshi ; Walter, Henrik ; Winterer, Jeanne ; Broulidakis, M. John ; van Noort, Betteke Maria ; Stringaris, Argyris ; Penttilä, Jani ; Grimmer, Yvonne ; Insensee, Corinna ; Becker, Andreas ; Zhang, Yuning ; King, Sinead ; Sinclair, Julia ; Schumann, Gunter ; Schmidt, Ulrike ; Desrivières, Sylvane</creator><creatorcontrib>Zhang, Zuo ; Robinson, Lauren ; Whelan, Robert ; Jollans, Lee ; Wang, Zijian ; Nees, Frauke ; Chu, Congying ; Bobou, Marina ; Du, Dongping ; Cristea, Ilinca ; Banaschewski, Tobias ; Barker, Gareth J. ; Bokde, Arun L.W. ; Grigis, Antoine ; Garavan, Hugh ; Heinz, Andreas ; Brühl, Rüdiger ; Martinot, Jean-Luc ; Martinot, Marie-Laure Paillère ; Artiges, Eric ; Orfanos, Dimitri Papadopoulos ; Poustka, Luise ; Hohmann, Sarah ; Millenet, Sabina ; Fröhner, Juliane H. ; Smolka, Michael N. ; Vaidya, Nilakshi ; Walter, Henrik ; Winterer, Jeanne ; Broulidakis, M. John ; van Noort, Betteke Maria ; Stringaris, Argyris ; Penttilä, Jani ; Grimmer, Yvonne ; Insensee, Corinna ; Becker, Andreas ; Zhang, Yuning ; King, Sinead ; Sinclair, Julia ; Schumann, Gunter ; Schmidt, Ulrike ; Desrivières, Sylvane</creatorcontrib><description>Early diagnosis and treatment of mental illnesses is hampered by the lack of reliable markers. This study used machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD). Case-control samples (aged 18–25 years), including participants with Anorexia Nervosa (AN), Bulimia Nervosa (BN), MDD, AUD, and matched controls, were used for diagnostic classification. For risk prediction, we used a longitudinal population-based sample (IMAGEN study), assessing adolescents at ages 14, 16 and 19. Regularized logistic regression models incorporated broad data domains spanning psychopathology, personality, cognition, substance use, and environment. The classification of EDs was highly accurate, even when excluding body mass index from the analysis. The area under the receiver operating characteristic curves (AUC-ROC [95 % CI]) reached 0.92 [0.86–0.97] for AN and 0.91 [0.85–0.96] for BN. The classification accuracies for MDD (0.91 [0.88–0.94]) and AUD (0.80 [0.74–0.85]) were also high. The models demonstrated high transdiagnostic potential, as those trained for EDs were also accurate in classifying AUD and MDD from healthy controls, and vice versa (AUC-ROCs, 0.75–0.93). Shared predictors, such as neuroticism, hopelessness, and symptoms of attention-deficit/hyperactivity disorder, were identified as reliable classifiers. In the longitudinal population sample, the models exhibited moderate performance in predicting the development of future ED symptoms (0.71 [0.67–0.75]), depressive symptoms (0.64 [0.60–0.68]), and harmful drinking (0.67 [0.64–0.70]). Our findings demonstrate the potential of combining multi-domain data for precise diagnostic and risk prediction applications in psychiatry. •Psychosocial data and machine-learning models accurately classify psychiatric patients from controls.•Neuroticism, hopelessness, and ADHD symptoms are transdiagnostic markers.•BMI information is not needed to for accurate classification of Anorexia Nervosa.•Development of symptoms at age 16/19y can be predicted based on data from 14y.</description><identifier>ISSN: 0165-0327</identifier><identifier>ISSN: 1573-2517</identifier><identifier>EISSN: 1573-2517</identifier><identifier>DOI: 10.1016/j.jad.2024.12.053</identifier><identifier>PMID: 39701465</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alcohol use disorder ; Eating disorders ; Major depressive disorder ; Predictive modeling ; Risk factors</subject><ispartof>Journal of affective disorders, 2024-12</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2483-715fb801c0b10018dfdbb43d208adec62155ebe6c95aa3183220bbc36a6b62373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jad.2024.12.053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39701465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zuo</creatorcontrib><creatorcontrib>Robinson, Lauren</creatorcontrib><creatorcontrib>Whelan, Robert</creatorcontrib><creatorcontrib>Jollans, Lee</creatorcontrib><creatorcontrib>Wang, Zijian</creatorcontrib><creatorcontrib>Nees, Frauke</creatorcontrib><creatorcontrib>Chu, Congying</creatorcontrib><creatorcontrib>Bobou, Marina</creatorcontrib><creatorcontrib>Du, Dongping</creatorcontrib><creatorcontrib>Cristea, Ilinca</creatorcontrib><creatorcontrib>Banaschewski, Tobias</creatorcontrib><creatorcontrib>Barker, Gareth J.</creatorcontrib><creatorcontrib>Bokde, Arun L.W.</creatorcontrib><creatorcontrib>Grigis, Antoine</creatorcontrib><creatorcontrib>Garavan, Hugh</creatorcontrib><creatorcontrib>Heinz, Andreas</creatorcontrib><creatorcontrib>Brühl, Rüdiger</creatorcontrib><creatorcontrib>Martinot, Jean-Luc</creatorcontrib><creatorcontrib>Martinot, Marie-Laure Paillère</creatorcontrib><creatorcontrib>Artiges, Eric</creatorcontrib><creatorcontrib>Orfanos, Dimitri Papadopoulos</creatorcontrib><creatorcontrib>Poustka, Luise</creatorcontrib><creatorcontrib>Hohmann, Sarah</creatorcontrib><creatorcontrib>Millenet, Sabina</creatorcontrib><creatorcontrib>Fröhner, Juliane H.</creatorcontrib><creatorcontrib>Smolka, Michael N.</creatorcontrib><creatorcontrib>Vaidya, Nilakshi</creatorcontrib><creatorcontrib>Walter, Henrik</creatorcontrib><creatorcontrib>Winterer, Jeanne</creatorcontrib><creatorcontrib>Broulidakis, M. John</creatorcontrib><creatorcontrib>van Noort, Betteke Maria</creatorcontrib><creatorcontrib>Stringaris, Argyris</creatorcontrib><creatorcontrib>Penttilä, Jani</creatorcontrib><creatorcontrib>Grimmer, Yvonne</creatorcontrib><creatorcontrib>Insensee, Corinna</creatorcontrib><creatorcontrib>Becker, Andreas</creatorcontrib><creatorcontrib>Zhang, Yuning</creatorcontrib><creatorcontrib>King, Sinead</creatorcontrib><creatorcontrib>Sinclair, Julia</creatorcontrib><creatorcontrib>Schumann, Gunter</creatorcontrib><creatorcontrib>Schmidt, Ulrike</creatorcontrib><creatorcontrib>Desrivières, Sylvane</creatorcontrib><title>Machine learning models for diagnosis and risk prediction in eating disorders, depression, and alcohol use disorder</title><title>Journal of affective disorders</title><addtitle>J Affect Disord</addtitle><description>Early diagnosis and treatment of mental illnesses is hampered by the lack of reliable markers. This study used machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD). Case-control samples (aged 18–25 years), including participants with Anorexia Nervosa (AN), Bulimia Nervosa (BN), MDD, AUD, and matched controls, were used for diagnostic classification. For risk prediction, we used a longitudinal population-based sample (IMAGEN study), assessing adolescents at ages 14, 16 and 19. Regularized logistic regression models incorporated broad data domains spanning psychopathology, personality, cognition, substance use, and environment. The classification of EDs was highly accurate, even when excluding body mass index from the analysis. The area under the receiver operating characteristic curves (AUC-ROC [95 % CI]) reached 0.92 [0.86–0.97] for AN and 0.91 [0.85–0.96] for BN. The classification accuracies for MDD (0.91 [0.88–0.94]) and AUD (0.80 [0.74–0.85]) were also high. The models demonstrated high transdiagnostic potential, as those trained for EDs were also accurate in classifying AUD and MDD from healthy controls, and vice versa (AUC-ROCs, 0.75–0.93). Shared predictors, such as neuroticism, hopelessness, and symptoms of attention-deficit/hyperactivity disorder, were identified as reliable classifiers. In the longitudinal population sample, the models exhibited moderate performance in predicting the development of future ED symptoms (0.71 [0.67–0.75]), depressive symptoms (0.64 [0.60–0.68]), and harmful drinking (0.67 [0.64–0.70]). Our findings demonstrate the potential of combining multi-domain data for precise diagnostic and risk prediction applications in psychiatry. •Psychosocial data and machine-learning models accurately classify psychiatric patients from controls.•Neuroticism, hopelessness, and ADHD symptoms are transdiagnostic markers.•BMI information is not needed to for accurate classification of Anorexia Nervosa.•Development of symptoms at age 16/19y can be predicted based on data from 14y.</description><subject>Alcohol use disorder</subject><subject>Eating disorders</subject><subject>Major depressive disorder</subject><subject>Predictive modeling</subject><subject>Risk factors</subject><issn>0165-0327</issn><issn>1573-2517</issn><issn>1573-2517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMo7rj6A7xIjh6221TSSfciCLL4BSte9BzSSfVMxp5kTPUs-O_NOOugF091qOd9q-Bh7DmIFgSYV9t260IrhexakK3Q6gFbge5VIzX0D9mqMroRSvYX7AnRVghhrnvxmF2oOqAzesXos_ObmJDP6EqKac13OeBMfMqFh-jWKVMk7lLgJdJ3vi8Yol9iTjwmjm45RkKkXAIWuuIBK0FU91e_Q272eZNnfiA8Y0_Zo8nNhM_u5yX79v7d15uPze2XD59u3t42XnaDanrQ0zgI8GIEIWAIUxjHTgUpBhfQGwla44jGX2vnFAxKSjGOXhlnRiNVry7Zm1Pv_jDuMHhMS3Gz3Ze4c-WnzS7afzcpbuw639neQC8HUwte3heU_OOAtNhdJI_z7BLmA1kFXd8NoI2oKJxQXzJRwel8BoQ9yrJbW2XZoywL0lZZNfPi7__OiT92KvD6BFQheBexWPIRk68KCvrFhhz_U_8LPQCncg</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Zhang, Zuo</creator><creator>Robinson, Lauren</creator><creator>Whelan, Robert</creator><creator>Jollans, Lee</creator><creator>Wang, Zijian</creator><creator>Nees, Frauke</creator><creator>Chu, Congying</creator><creator>Bobou, Marina</creator><creator>Du, Dongping</creator><creator>Cristea, Ilinca</creator><creator>Banaschewski, Tobias</creator><creator>Barker, Gareth J.</creator><creator>Bokde, Arun L.W.</creator><creator>Grigis, Antoine</creator><creator>Garavan, Hugh</creator><creator>Heinz, Andreas</creator><creator>Brühl, Rüdiger</creator><creator>Martinot, Jean-Luc</creator><creator>Martinot, Marie-Laure Paillère</creator><creator>Artiges, Eric</creator><creator>Orfanos, Dimitri Papadopoulos</creator><creator>Poustka, Luise</creator><creator>Hohmann, Sarah</creator><creator>Millenet, Sabina</creator><creator>Fröhner, Juliane H.</creator><creator>Smolka, Michael N.</creator><creator>Vaidya, Nilakshi</creator><creator>Walter, Henrik</creator><creator>Winterer, Jeanne</creator><creator>Broulidakis, M. John</creator><creator>van Noort, Betteke Maria</creator><creator>Stringaris, Argyris</creator><creator>Penttilä, Jani</creator><creator>Grimmer, Yvonne</creator><creator>Insensee, Corinna</creator><creator>Becker, Andreas</creator><creator>Zhang, Yuning</creator><creator>King, Sinead</creator><creator>Sinclair, Julia</creator><creator>Schumann, Gunter</creator><creator>Schmidt, Ulrike</creator><creator>Desrivières, Sylvane</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241217</creationdate><title>Machine learning models for diagnosis and risk prediction in eating disorders, depression, and alcohol use disorder</title><author>Zhang, Zuo ; Robinson, Lauren ; Whelan, Robert ; Jollans, Lee ; Wang, Zijian ; Nees, Frauke ; Chu, Congying ; Bobou, Marina ; Du, Dongping ; Cristea, Ilinca ; Banaschewski, Tobias ; Barker, Gareth J. ; Bokde, Arun L.W. ; Grigis, Antoine ; Garavan, Hugh ; Heinz, Andreas ; Brühl, Rüdiger ; Martinot, Jean-Luc ; Martinot, Marie-Laure Paillère ; Artiges, Eric ; Orfanos, Dimitri Papadopoulos ; Poustka, Luise ; Hohmann, Sarah ; Millenet, Sabina ; Fröhner, Juliane H. ; Smolka, Michael N. ; Vaidya, Nilakshi ; Walter, Henrik ; Winterer, Jeanne ; Broulidakis, M. John ; van Noort, Betteke Maria ; Stringaris, Argyris ; Penttilä, Jani ; Grimmer, Yvonne ; Insensee, Corinna ; Becker, Andreas ; Zhang, Yuning ; King, Sinead ; Sinclair, Julia ; Schumann, Gunter ; Schmidt, Ulrike ; Desrivières, Sylvane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2483-715fb801c0b10018dfdbb43d208adec62155ebe6c95aa3183220bbc36a6b62373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alcohol use disorder</topic><topic>Eating disorders</topic><topic>Major depressive disorder</topic><topic>Predictive modeling</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zuo</creatorcontrib><creatorcontrib>Robinson, Lauren</creatorcontrib><creatorcontrib>Whelan, Robert</creatorcontrib><creatorcontrib>Jollans, Lee</creatorcontrib><creatorcontrib>Wang, Zijian</creatorcontrib><creatorcontrib>Nees, Frauke</creatorcontrib><creatorcontrib>Chu, Congying</creatorcontrib><creatorcontrib>Bobou, Marina</creatorcontrib><creatorcontrib>Du, Dongping</creatorcontrib><creatorcontrib>Cristea, Ilinca</creatorcontrib><creatorcontrib>Banaschewski, Tobias</creatorcontrib><creatorcontrib>Barker, Gareth J.</creatorcontrib><creatorcontrib>Bokde, Arun L.W.</creatorcontrib><creatorcontrib>Grigis, Antoine</creatorcontrib><creatorcontrib>Garavan, Hugh</creatorcontrib><creatorcontrib>Heinz, Andreas</creatorcontrib><creatorcontrib>Brühl, Rüdiger</creatorcontrib><creatorcontrib>Martinot, Jean-Luc</creatorcontrib><creatorcontrib>Martinot, Marie-Laure Paillère</creatorcontrib><creatorcontrib>Artiges, Eric</creatorcontrib><creatorcontrib>Orfanos, Dimitri Papadopoulos</creatorcontrib><creatorcontrib>Poustka, Luise</creatorcontrib><creatorcontrib>Hohmann, Sarah</creatorcontrib><creatorcontrib>Millenet, Sabina</creatorcontrib><creatorcontrib>Fröhner, Juliane H.</creatorcontrib><creatorcontrib>Smolka, Michael N.</creatorcontrib><creatorcontrib>Vaidya, Nilakshi</creatorcontrib><creatorcontrib>Walter, Henrik</creatorcontrib><creatorcontrib>Winterer, Jeanne</creatorcontrib><creatorcontrib>Broulidakis, M. John</creatorcontrib><creatorcontrib>van Noort, Betteke Maria</creatorcontrib><creatorcontrib>Stringaris, Argyris</creatorcontrib><creatorcontrib>Penttilä, Jani</creatorcontrib><creatorcontrib>Grimmer, Yvonne</creatorcontrib><creatorcontrib>Insensee, Corinna</creatorcontrib><creatorcontrib>Becker, Andreas</creatorcontrib><creatorcontrib>Zhang, Yuning</creatorcontrib><creatorcontrib>King, Sinead</creatorcontrib><creatorcontrib>Sinclair, Julia</creatorcontrib><creatorcontrib>Schumann, Gunter</creatorcontrib><creatorcontrib>Schmidt, Ulrike</creatorcontrib><creatorcontrib>Desrivières, Sylvane</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of affective disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zuo</au><au>Robinson, Lauren</au><au>Whelan, Robert</au><au>Jollans, Lee</au><au>Wang, Zijian</au><au>Nees, Frauke</au><au>Chu, Congying</au><au>Bobou, Marina</au><au>Du, Dongping</au><au>Cristea, Ilinca</au><au>Banaschewski, Tobias</au><au>Barker, Gareth J.</au><au>Bokde, Arun L.W.</au><au>Grigis, Antoine</au><au>Garavan, Hugh</au><au>Heinz, Andreas</au><au>Brühl, Rüdiger</au><au>Martinot, Jean-Luc</au><au>Martinot, Marie-Laure Paillère</au><au>Artiges, Eric</au><au>Orfanos, Dimitri Papadopoulos</au><au>Poustka, Luise</au><au>Hohmann, Sarah</au><au>Millenet, Sabina</au><au>Fröhner, Juliane H.</au><au>Smolka, Michael N.</au><au>Vaidya, Nilakshi</au><au>Walter, Henrik</au><au>Winterer, Jeanne</au><au>Broulidakis, M. John</au><au>van Noort, Betteke Maria</au><au>Stringaris, Argyris</au><au>Penttilä, Jani</au><au>Grimmer, Yvonne</au><au>Insensee, Corinna</au><au>Becker, Andreas</au><au>Zhang, Yuning</au><au>King, Sinead</au><au>Sinclair, Julia</au><au>Schumann, Gunter</au><au>Schmidt, Ulrike</au><au>Desrivières, Sylvane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning models for diagnosis and risk prediction in eating disorders, depression, and alcohol use disorder</atitle><jtitle>Journal of affective disorders</jtitle><addtitle>J Affect Disord</addtitle><date>2024-12-17</date><risdate>2024</risdate><issn>0165-0327</issn><issn>1573-2517</issn><eissn>1573-2517</eissn><abstract>Early diagnosis and treatment of mental illnesses is hampered by the lack of reliable markers. This study used machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD). Case-control samples (aged 18–25 years), including participants with Anorexia Nervosa (AN), Bulimia Nervosa (BN), MDD, AUD, and matched controls, were used for diagnostic classification. For risk prediction, we used a longitudinal population-based sample (IMAGEN study), assessing adolescents at ages 14, 16 and 19. Regularized logistic regression models incorporated broad data domains spanning psychopathology, personality, cognition, substance use, and environment. The classification of EDs was highly accurate, even when excluding body mass index from the analysis. The area under the receiver operating characteristic curves (AUC-ROC [95 % CI]) reached 0.92 [0.86–0.97] for AN and 0.91 [0.85–0.96] for BN. The classification accuracies for MDD (0.91 [0.88–0.94]) and AUD (0.80 [0.74–0.85]) were also high. The models demonstrated high transdiagnostic potential, as those trained for EDs were also accurate in classifying AUD and MDD from healthy controls, and vice versa (AUC-ROCs, 0.75–0.93). Shared predictors, such as neuroticism, hopelessness, and symptoms of attention-deficit/hyperactivity disorder, were identified as reliable classifiers. In the longitudinal population sample, the models exhibited moderate performance in predicting the development of future ED symptoms (0.71 [0.67–0.75]), depressive symptoms (0.64 [0.60–0.68]), and harmful drinking (0.67 [0.64–0.70]). Our findings demonstrate the potential of combining multi-domain data for precise diagnostic and risk prediction applications in psychiatry. •Psychosocial data and machine-learning models accurately classify psychiatric patients from controls.•Neuroticism, hopelessness, and ADHD symptoms are transdiagnostic markers.•BMI information is not needed to for accurate classification of Anorexia Nervosa.•Development of symptoms at age 16/19y can be predicted based on data from 14y.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39701465</pmid><doi>10.1016/j.jad.2024.12.053</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0327
ispartof Journal of affective disorders, 2024-12
issn 0165-0327
1573-2517
1573-2517
language eng
recordid cdi_proquest_miscellaneous_3147481560
source Elsevier ScienceDirect Journals Complete
subjects Alcohol use disorder
Eating disorders
Major depressive disorder
Predictive modeling
Risk factors
title Machine learning models for diagnosis and risk prediction in eating disorders, depression, and alcohol use disorder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20models%20for%20diagnosis%20and%20risk%20prediction%20in%20eating%20disorders,%20depression,%20and%20alcohol%20use%20disorder&rft.jtitle=Journal%20of%20affective%20disorders&rft.au=Zhang,%20Zuo&rft.date=2024-12-17&rft.issn=0165-0327&rft.eissn=1573-2517&rft_id=info:doi/10.1016/j.jad.2024.12.053&rft_dat=%3Cproquest_pubme%3E3147481560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147481560&rft_id=info:pmid/39701465&rft_els_id=S016503272402041X&rfr_iscdi=true