Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars

[Display omitted] •Engineered strains utilize xylose for efficient poly(3-hydroxybutyrate) production.•RXI22 strain achieves 76 wt% poly(3-hydroxybutyrate) production from mixed sugars.•RXI22 strain produced 1.8 times more poly(3-hydroxybutyrate) than RXW62 strain.•Strains are promising host for pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2025-02, Vol.418, p.131996, Article 131996
Hauptverfasser: Lee, So Jeong, Kim, Jiwon, Ahn, Jung Ho, Gong, Gyeongtaek, Um, Youngsoon, Lee, Sun-Mi, Kim, Kyoung Heon, Ko, Ja Kyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 131996
container_title Bioresource technology
container_volume 418
creator Lee, So Jeong
Kim, Jiwon
Ahn, Jung Ho
Gong, Gyeongtaek
Um, Youngsoon
Lee, Sun-Mi
Kim, Kyoung Heon
Ko, Ja Kyong
description [Display omitted] •Engineered strains utilize xylose for efficient poly(3-hydroxybutyrate) production.•RXI22 strain achieves 76 wt% poly(3-hydroxybutyrate) production from mixed sugars.•RXI22 strain produced 1.8 times more poly(3-hydroxybutyrate) than RXW62 strain.•Strains are promising host for producing polyhydroxyalkanaote from lignocellulose.•Study expands microbial carbon source use for polyhydroxyalkanaote synthesis. Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C. necator NCIMB11599 cannot metabolize xylose, we developed xylose-utilizing strains by introducing synthetic xylose metabolic pathways, including the xylose isomerase, Weimberg, and Dahms pathways. Through rational and evolutionary engineering, the RXI22 and RXW62 strains were able to efficiently utilize xylose as the sole carbon source, producing 64.2 wt% (wt%) and 61.4 wt% PHB, respectively. Among the engineered strains, the xylose isomerase-based RXI22 strain demonstrated the most efficient co-fermentation performance, with a PHB content of 75.7 wt% and a yield of 0.32 (g PHB/g glucose and xylose) from mixed sugars. The strains developed in this study represent an enhanced PHA producer, offering a sustainable route for converting lignocellulosic biomass into bioplastics.
doi_str_mv 10.1016/j.biortech.2024.131996
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3147481206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852424017000</els_id><sourcerecordid>3147481206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-58d1429c7ffce41eaf2eb514da04e2e1f2d8aba644cb9ebc22fb8c396ef1e68f3</originalsourceid><addsrcrecordid>eNqFkEtvEzEURi0EoqHwFyovy2KCX_GMd6CoPKRKbGBteezrxNGMHWxPyfDrOyEtWxZXd3O--zgI3VCypoTKD4d1H1KuYPdrRphYU06Vki_QinYtb5hq5Uu0IkqSptswcYXelHIghHDastfoiquWUK74Cv2-i7sQAXKIO3yah1QATzUM4Y-pIUUcIt5OxxzMQ3BTwRGsqSljvxTEvYkWHD6mYb7lzX52OZ3mfqpzNhXe42NObrJ_x_icRjyG00KXaWdyeYteeTMUePfUr9HPz3c_tl-b--9fvm0_3TeWiU1tNp2jginbem9BUDCeQb-hwhkigAH1zHWmN1II2yvoLWO-7yxXEjwF2Xl-jW4vc5djfk1Qqh5DsTAMJkKaiuZUtKKjjMgFlRfU5lRKBq-Xv0eTZ02JPkvXB_0sXZ-l64v0JXjztGPqR3D_Ys-WF-DjBYDl04cAWRcb4OwuZLBVuxT-t-MR5rOa8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147481206</pqid></control><display><type>article</type><title>Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lee, So Jeong ; Kim, Jiwon ; Ahn, Jung Ho ; Gong, Gyeongtaek ; Um, Youngsoon ; Lee, Sun-Mi ; Kim, Kyoung Heon ; Ko, Ja Kyong</creator><creatorcontrib>Lee, So Jeong ; Kim, Jiwon ; Ahn, Jung Ho ; Gong, Gyeongtaek ; Um, Youngsoon ; Lee, Sun-Mi ; Kim, Kyoung Heon ; Ko, Ja Kyong</creatorcontrib><description>[Display omitted] •Engineered strains utilize xylose for efficient poly(3-hydroxybutyrate) production.•RXI22 strain achieves 76 wt% poly(3-hydroxybutyrate) production from mixed sugars.•RXI22 strain produced 1.8 times more poly(3-hydroxybutyrate) than RXW62 strain.•Strains are promising host for producing polyhydroxyalkanaote from lignocellulose.•Study expands microbial carbon source use for polyhydroxyalkanaote synthesis. Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C. necator NCIMB11599 cannot metabolize xylose, we developed xylose-utilizing strains by introducing synthetic xylose metabolic pathways, including the xylose isomerase, Weimberg, and Dahms pathways. Through rational and evolutionary engineering, the RXI22 and RXW62 strains were able to efficiently utilize xylose as the sole carbon source, producing 64.2 wt% (wt%) and 61.4 wt% PHB, respectively. Among the engineered strains, the xylose isomerase-based RXI22 strain demonstrated the most efficient co-fermentation performance, with a PHB content of 75.7 wt% and a yield of 0.32 (g PHB/g glucose and xylose) from mixed sugars. The strains developed in this study represent an enhanced PHA producer, offering a sustainable route for converting lignocellulosic biomass into bioplastics.</description><identifier>ISSN: 0960-8524</identifier><identifier>ISSN: 1873-2976</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2024.131996</identifier><identifier>PMID: 39701393</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biodegradable polymer ; Biomass ; Cupriavidus necator - metabolism ; Fermentation ; Hydroxybutyrates - metabolism ; Lignocellulosic sugar ; Metabolic engineering ; Metabolic Engineering - methods ; Polyesters - metabolism ; Polyhydroxybutyrates ; Sugars - metabolism ; Weimberg pathway ; Xylose - metabolism ; Xylose isomerase pathway</subject><ispartof>Bioresource technology, 2025-02, Vol.418, p.131996, Article 131996</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-58d1429c7ffce41eaf2eb514da04e2e1f2d8aba644cb9ebc22fb8c396ef1e68f3</cites><orcidid>0000-0003-3513-7237 ; 0000-0002-8089-0909 ; 0000-0003-1695-1874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852424017000$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39701393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, So Jeong</creatorcontrib><creatorcontrib>Kim, Jiwon</creatorcontrib><creatorcontrib>Ahn, Jung Ho</creatorcontrib><creatorcontrib>Gong, Gyeongtaek</creatorcontrib><creatorcontrib>Um, Youngsoon</creatorcontrib><creatorcontrib>Lee, Sun-Mi</creatorcontrib><creatorcontrib>Kim, Kyoung Heon</creatorcontrib><creatorcontrib>Ko, Ja Kyong</creatorcontrib><title>Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •Engineered strains utilize xylose for efficient poly(3-hydroxybutyrate) production.•RXI22 strain achieves 76 wt% poly(3-hydroxybutyrate) production from mixed sugars.•RXI22 strain produced 1.8 times more poly(3-hydroxybutyrate) than RXW62 strain.•Strains are promising host for producing polyhydroxyalkanaote from lignocellulose.•Study expands microbial carbon source use for polyhydroxyalkanaote synthesis. Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C. necator NCIMB11599 cannot metabolize xylose, we developed xylose-utilizing strains by introducing synthetic xylose metabolic pathways, including the xylose isomerase, Weimberg, and Dahms pathways. Through rational and evolutionary engineering, the RXI22 and RXW62 strains were able to efficiently utilize xylose as the sole carbon source, producing 64.2 wt% (wt%) and 61.4 wt% PHB, respectively. Among the engineered strains, the xylose isomerase-based RXI22 strain demonstrated the most efficient co-fermentation performance, with a PHB content of 75.7 wt% and a yield of 0.32 (g PHB/g glucose and xylose) from mixed sugars. The strains developed in this study represent an enhanced PHA producer, offering a sustainable route for converting lignocellulosic biomass into bioplastics.</description><subject>Biodegradable polymer</subject><subject>Biomass</subject><subject>Cupriavidus necator - metabolism</subject><subject>Fermentation</subject><subject>Hydroxybutyrates - metabolism</subject><subject>Lignocellulosic sugar</subject><subject>Metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Polyesters - metabolism</subject><subject>Polyhydroxybutyrates</subject><subject>Sugars - metabolism</subject><subject>Weimberg pathway</subject><subject>Xylose - metabolism</subject><subject>Xylose isomerase pathway</subject><issn>0960-8524</issn><issn>1873-2976</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtvEzEURi0EoqHwFyovy2KCX_GMd6CoPKRKbGBteezrxNGMHWxPyfDrOyEtWxZXd3O--zgI3VCypoTKD4d1H1KuYPdrRphYU06Vki_QinYtb5hq5Uu0IkqSptswcYXelHIghHDastfoiquWUK74Cv2-i7sQAXKIO3yah1QATzUM4Y-pIUUcIt5OxxzMQ3BTwRGsqSljvxTEvYkWHD6mYb7lzX52OZ3mfqpzNhXe42NObrJ_x_icRjyG00KXaWdyeYteeTMUePfUr9HPz3c_tl-b--9fvm0_3TeWiU1tNp2jginbem9BUDCeQb-hwhkigAH1zHWmN1II2yvoLWO-7yxXEjwF2Xl-jW4vc5djfk1Qqh5DsTAMJkKaiuZUtKKjjMgFlRfU5lRKBq-Xv0eTZ02JPkvXB_0sXZ-l64v0JXjztGPqR3D_Ys-WF-DjBYDl04cAWRcb4OwuZLBVuxT-t-MR5rOa8Q</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Lee, So Jeong</creator><creator>Kim, Jiwon</creator><creator>Ahn, Jung Ho</creator><creator>Gong, Gyeongtaek</creator><creator>Um, Youngsoon</creator><creator>Lee, Sun-Mi</creator><creator>Kim, Kyoung Heon</creator><creator>Ko, Ja Kyong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3513-7237</orcidid><orcidid>https://orcid.org/0000-0002-8089-0909</orcidid><orcidid>https://orcid.org/0000-0003-1695-1874</orcidid></search><sort><creationdate>20250201</creationdate><title>Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars</title><author>Lee, So Jeong ; Kim, Jiwon ; Ahn, Jung Ho ; Gong, Gyeongtaek ; Um, Youngsoon ; Lee, Sun-Mi ; Kim, Kyoung Heon ; Ko, Ja Kyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-58d1429c7ffce41eaf2eb514da04e2e1f2d8aba644cb9ebc22fb8c396ef1e68f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Biodegradable polymer</topic><topic>Biomass</topic><topic>Cupriavidus necator - metabolism</topic><topic>Fermentation</topic><topic>Hydroxybutyrates - metabolism</topic><topic>Lignocellulosic sugar</topic><topic>Metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Polyesters - metabolism</topic><topic>Polyhydroxybutyrates</topic><topic>Sugars - metabolism</topic><topic>Weimberg pathway</topic><topic>Xylose - metabolism</topic><topic>Xylose isomerase pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, So Jeong</creatorcontrib><creatorcontrib>Kim, Jiwon</creatorcontrib><creatorcontrib>Ahn, Jung Ho</creatorcontrib><creatorcontrib>Gong, Gyeongtaek</creatorcontrib><creatorcontrib>Um, Youngsoon</creatorcontrib><creatorcontrib>Lee, Sun-Mi</creatorcontrib><creatorcontrib>Kim, Kyoung Heon</creatorcontrib><creatorcontrib>Ko, Ja Kyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, So Jeong</au><au>Kim, Jiwon</au><au>Ahn, Jung Ho</au><au>Gong, Gyeongtaek</au><au>Um, Youngsoon</au><au>Lee, Sun-Mi</au><au>Kim, Kyoung Heon</au><au>Ko, Ja Kyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2025-02-01</date><risdate>2025</risdate><volume>418</volume><spage>131996</spage><pages>131996-</pages><artnum>131996</artnum><issn>0960-8524</issn><issn>1873-2976</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •Engineered strains utilize xylose for efficient poly(3-hydroxybutyrate) production.•RXI22 strain achieves 76 wt% poly(3-hydroxybutyrate) production from mixed sugars.•RXI22 strain produced 1.8 times more poly(3-hydroxybutyrate) than RXW62 strain.•Strains are promising host for producing polyhydroxyalkanaote from lignocellulose.•Study expands microbial carbon source use for polyhydroxyalkanaote synthesis. Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C. necator NCIMB11599 cannot metabolize xylose, we developed xylose-utilizing strains by introducing synthetic xylose metabolic pathways, including the xylose isomerase, Weimberg, and Dahms pathways. Through rational and evolutionary engineering, the RXI22 and RXW62 strains were able to efficiently utilize xylose as the sole carbon source, producing 64.2 wt% (wt%) and 61.4 wt% PHB, respectively. Among the engineered strains, the xylose isomerase-based RXI22 strain demonstrated the most efficient co-fermentation performance, with a PHB content of 75.7 wt% and a yield of 0.32 (g PHB/g glucose and xylose) from mixed sugars. The strains developed in this study represent an enhanced PHA producer, offering a sustainable route for converting lignocellulosic biomass into bioplastics.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39701393</pmid><doi>10.1016/j.biortech.2024.131996</doi><orcidid>https://orcid.org/0000-0003-3513-7237</orcidid><orcidid>https://orcid.org/0000-0002-8089-0909</orcidid><orcidid>https://orcid.org/0000-0003-1695-1874</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2025-02, Vol.418, p.131996, Article 131996
issn 0960-8524
1873-2976
1873-2976
language eng
recordid cdi_proquest_miscellaneous_3147481206
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biodegradable polymer
Biomass
Cupriavidus necator - metabolism
Fermentation
Hydroxybutyrates - metabolism
Lignocellulosic sugar
Metabolic engineering
Metabolic Engineering - methods
Polyesters - metabolism
Polyhydroxybutyrates
Sugars - metabolism
Weimberg pathway
Xylose - metabolism
Xylose isomerase pathway
title Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20xylose%20utilization%20in%20Cupriavidus%20necator%20for%20enhanced%20poly(3-hydroxybutyrate)%20production%20from%20mixed%20sugars&rft.jtitle=Bioresource%20technology&rft.au=Lee,%20So%20Jeong&rft.date=2025-02-01&rft.volume=418&rft.spage=131996&rft.pages=131996-&rft.artnum=131996&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2024.131996&rft_dat=%3Cproquest_cross%3E3147481206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147481206&rft_id=info:pmid/39701393&rft_els_id=S0960852424017000&rfr_iscdi=true