Capture and Diffusion of Hydrogen in Tantalum and Copper with Vacancy Defects: A First-Principles Study

Oxygen-free copper is utilized in nuclear processing heaters; however, it exhibits poor resistance to hydrogen radiation corrosion. A tantalum–copper diffusion layer with high vacancy concentration was prepared on the copper surface. This layer demonstrates superior hydrogen trapping and diffusion r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2025-01, Vol.17 (1), p.2376-2388
Hauptverfasser: Liu, Xiaoqing, Zhang, Pingze, Zhan, Mengling, Dang, Bo, Yang, Kai, Han, Peide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2388
container_issue 1
container_start_page 2376
container_title ACS applied materials & interfaces
container_volume 17
creator Liu, Xiaoqing
Zhang, Pingze
Zhan, Mengling
Dang, Bo
Yang, Kai
Han, Peide
description Oxygen-free copper is utilized in nuclear processing heaters; however, it exhibits poor resistance to hydrogen radiation corrosion. A tantalum–copper diffusion layer with high vacancy concentration was prepared on the copper surface. This layer demonstrates superior hydrogen trapping and diffusion resistance compared to pure tantalum, though the underlying mechanism remains unclear. First-principles DFT methods were employed to investigate the absorption of hydrogen atoms by tantalum and copper vacancies, forming vacancy-hydrogen complexes, and their diffusion characteristics. These were compared with interstitial configurations. The ground state formation energy is lowest when a tantalum vacancy captures six hydrogen atoms. It can accommodate up to 12 hydrogen atoms while maintaining a higher energy than the interstitial configuration, forming a spherical structure with special symmetry. For copper vacancies, the formation energy remains higher than the interstitial configuration when capturing up to six hydrogen atoms. The high-vacancy diffusion layer exhibits a strong hydrogen trapping capacity. Posthydrogen capture, the overall migration energy for both tantalum and copper vacancies exceeds 2.5 eV. The energy barrier for individual hydrogen atom diffusion outward is higher than in interstitial cases when capturing up to six hydrogen atoms. Vacancies capturing hydrogen atoms play a role in maintaining the stability of hydrogen in its ground state.
doi_str_mv 10.1021/acsami.4c13331
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3147480488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147480488</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-7b9a7c26ab7975eebb64b3cc029e0b246c30023588477eb86f4c828e0bfb57653</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobn7ceim5FKEzX21S78bmnDBQcHpbkjSdGW1akxbZv7fauTuvzoHzvC-cB4ArjCYYEXwndZCVnTCNKaX4CIxxylgkSEyODztjI3AWwhahhBIUn4IRTTlCiPEx2Mxk03beQOlyOLdF0QVbO1gXcLnLfb0xDloH19K1suyqX2pWN43x8Mu2H_Bdaun0Ds5NYXQb7uEULqwPbfTirdO2KU2Ar22X7y7ASSHLYC738xy8LR7Ws2W0en58mk1XkSQ4biOuUsk1SaTiKY-NUSphimqNSGqQIizRFCFCYyEY50aJpGBaENHfChXzJKbn4GbobXz92ZnQZpUN2pSldKbuQkYx40wgJkSPTgZU-zoEb4qs8baSfpdhlP3IzQa52V5uH7jed3eqMvkB_7PZA7cD0Aezbd1517_6X9s3rp-D5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147480488</pqid></control><display><type>article</type><title>Capture and Diffusion of Hydrogen in Tantalum and Copper with Vacancy Defects: A First-Principles Study</title><source>ACS Publications</source><creator>Liu, Xiaoqing ; Zhang, Pingze ; Zhan, Mengling ; Dang, Bo ; Yang, Kai ; Han, Peide</creator><creatorcontrib>Liu, Xiaoqing ; Zhang, Pingze ; Zhan, Mengling ; Dang, Bo ; Yang, Kai ; Han, Peide</creatorcontrib><description>Oxygen-free copper is utilized in nuclear processing heaters; however, it exhibits poor resistance to hydrogen radiation corrosion. A tantalum–copper diffusion layer with high vacancy concentration was prepared on the copper surface. This layer demonstrates superior hydrogen trapping and diffusion resistance compared to pure tantalum, though the underlying mechanism remains unclear. First-principles DFT methods were employed to investigate the absorption of hydrogen atoms by tantalum and copper vacancies, forming vacancy-hydrogen complexes, and their diffusion characteristics. These were compared with interstitial configurations. The ground state formation energy is lowest when a tantalum vacancy captures six hydrogen atoms. It can accommodate up to 12 hydrogen atoms while maintaining a higher energy than the interstitial configuration, forming a spherical structure with special symmetry. For copper vacancies, the formation energy remains higher than the interstitial configuration when capturing up to six hydrogen atoms. The high-vacancy diffusion layer exhibits a strong hydrogen trapping capacity. Posthydrogen capture, the overall migration energy for both tantalum and copper vacancies exceeds 2.5 eV. The energy barrier for individual hydrogen atom diffusion outward is higher than in interstitial cases when capturing up to six hydrogen atoms. Vacancies capturing hydrogen atoms play a role in maintaining the stability of hydrogen in its ground state.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c13331</identifier><identifier>PMID: 39700047</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2025-01, Vol.17 (1), p.2376-2388</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-7b9a7c26ab7975eebb64b3cc029e0b246c30023588477eb86f4c828e0bfb57653</cites><orcidid>0009-0005-0824-0150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c13331$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c13331$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39700047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaoqing</creatorcontrib><creatorcontrib>Zhang, Pingze</creatorcontrib><creatorcontrib>Zhan, Mengling</creatorcontrib><creatorcontrib>Dang, Bo</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Han, Peide</creatorcontrib><title>Capture and Diffusion of Hydrogen in Tantalum and Copper with Vacancy Defects: A First-Principles Study</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Oxygen-free copper is utilized in nuclear processing heaters; however, it exhibits poor resistance to hydrogen radiation corrosion. A tantalum–copper diffusion layer with high vacancy concentration was prepared on the copper surface. This layer demonstrates superior hydrogen trapping and diffusion resistance compared to pure tantalum, though the underlying mechanism remains unclear. First-principles DFT methods were employed to investigate the absorption of hydrogen atoms by tantalum and copper vacancies, forming vacancy-hydrogen complexes, and their diffusion characteristics. These were compared with interstitial configurations. The ground state formation energy is lowest when a tantalum vacancy captures six hydrogen atoms. It can accommodate up to 12 hydrogen atoms while maintaining a higher energy than the interstitial configuration, forming a spherical structure with special symmetry. For copper vacancies, the formation energy remains higher than the interstitial configuration when capturing up to six hydrogen atoms. The high-vacancy diffusion layer exhibits a strong hydrogen trapping capacity. Posthydrogen capture, the overall migration energy for both tantalum and copper vacancies exceeds 2.5 eV. The energy barrier for individual hydrogen atom diffusion outward is higher than in interstitial cases when capturing up to six hydrogen atoms. Vacancies capturing hydrogen atoms play a role in maintaining the stability of hydrogen in its ground state.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMobn7ceim5FKEzX21S78bmnDBQcHpbkjSdGW1akxbZv7fauTuvzoHzvC-cB4ArjCYYEXwndZCVnTCNKaX4CIxxylgkSEyODztjI3AWwhahhBIUn4IRTTlCiPEx2Mxk03beQOlyOLdF0QVbO1gXcLnLfb0xDloH19K1suyqX2pWN43x8Mu2H_Bdaun0Ds5NYXQb7uEULqwPbfTirdO2KU2Ar22X7y7ASSHLYC738xy8LR7Ws2W0en58mk1XkSQ4biOuUsk1SaTiKY-NUSphimqNSGqQIizRFCFCYyEY50aJpGBaENHfChXzJKbn4GbobXz92ZnQZpUN2pSldKbuQkYx40wgJkSPTgZU-zoEb4qs8baSfpdhlP3IzQa52V5uH7jed3eqMvkB_7PZA7cD0Aezbd1517_6X9s3rp-D5Q</recordid><startdate>20250108</startdate><enddate>20250108</enddate><creator>Liu, Xiaoqing</creator><creator>Zhang, Pingze</creator><creator>Zhan, Mengling</creator><creator>Dang, Bo</creator><creator>Yang, Kai</creator><creator>Han, Peide</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0005-0824-0150</orcidid></search><sort><creationdate>20250108</creationdate><title>Capture and Diffusion of Hydrogen in Tantalum and Copper with Vacancy Defects: A First-Principles Study</title><author>Liu, Xiaoqing ; Zhang, Pingze ; Zhan, Mengling ; Dang, Bo ; Yang, Kai ; Han, Peide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-7b9a7c26ab7975eebb64b3cc029e0b246c30023588477eb86f4c828e0bfb57653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoqing</creatorcontrib><creatorcontrib>Zhang, Pingze</creatorcontrib><creatorcontrib>Zhan, Mengling</creatorcontrib><creatorcontrib>Dang, Bo</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Han, Peide</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaoqing</au><au>Zhang, Pingze</au><au>Zhan, Mengling</au><au>Dang, Bo</au><au>Yang, Kai</au><au>Han, Peide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capture and Diffusion of Hydrogen in Tantalum and Copper with Vacancy Defects: A First-Principles Study</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2025-01-08</date><risdate>2025</risdate><volume>17</volume><issue>1</issue><spage>2376</spage><epage>2388</epage><pages>2376-2388</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Oxygen-free copper is utilized in nuclear processing heaters; however, it exhibits poor resistance to hydrogen radiation corrosion. A tantalum–copper diffusion layer with high vacancy concentration was prepared on the copper surface. This layer demonstrates superior hydrogen trapping and diffusion resistance compared to pure tantalum, though the underlying mechanism remains unclear. First-principles DFT methods were employed to investigate the absorption of hydrogen atoms by tantalum and copper vacancies, forming vacancy-hydrogen complexes, and their diffusion characteristics. These were compared with interstitial configurations. The ground state formation energy is lowest when a tantalum vacancy captures six hydrogen atoms. It can accommodate up to 12 hydrogen atoms while maintaining a higher energy than the interstitial configuration, forming a spherical structure with special symmetry. For copper vacancies, the formation energy remains higher than the interstitial configuration when capturing up to six hydrogen atoms. The high-vacancy diffusion layer exhibits a strong hydrogen trapping capacity. Posthydrogen capture, the overall migration energy for both tantalum and copper vacancies exceeds 2.5 eV. The energy barrier for individual hydrogen atom diffusion outward is higher than in interstitial cases when capturing up to six hydrogen atoms. Vacancies capturing hydrogen atoms play a role in maintaining the stability of hydrogen in its ground state.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39700047</pmid><doi>10.1021/acsami.4c13331</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0005-0824-0150</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2025-01, Vol.17 (1), p.2376-2388
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3147480488
source ACS Publications
subjects Surfaces, Interfaces, and Applications
title Capture and Diffusion of Hydrogen in Tantalum and Copper with Vacancy Defects: A First-Principles Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capture%20and%20Diffusion%20of%20Hydrogen%20in%20Tantalum%20and%20Copper%20with%20Vacancy%20Defects:%20A%20First-Principles%20Study&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Xiaoqing&rft.date=2025-01-08&rft.volume=17&rft.issue=1&rft.spage=2376&rft.epage=2388&rft.pages=2376-2388&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c13331&rft_dat=%3Cproquest_cross%3E3147480488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147480488&rft_id=info:pmid/39700047&rfr_iscdi=true