Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles

Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2024-12, Vol.128 (49), p.21164-21172
Hauptverfasser: Zhao, Yinong, Wei, Xingfei, Hernandez, Rigoberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21172
container_issue 49
container_start_page 21164
container_title Journal of physical chemistry. C
container_volume 128
creator Zhao, Yinong
Wei, Xingfei
Hernandez, Rigoberto
description Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built. In addressing this challenge, we first found the commensurability rules between the numbers of AuNPs and poly­(allylamine hydrochloride)­s (PAHs). This gives rise to a well-defined valency of a AuNP which is the maximum number of PAHs that it can accommodate. We further use an engineered block copolymer, which has a conductive middle block to mediate the distance between a dimer of AuNP. We argue that by controlling the length of conductive block that is connecting the AuNPs and their respective topology, we can have ENPNs potentially adopt multiple states necessary for primitive neuromorphic computing.
doi_str_mv 10.1021/acs.jpcc.4c06055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146951238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146951238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a219t-ddb0ea20aa48fb39ad01fd4cf807555fbcb6258d42545428f688595752d8145c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EolDYmVBGBlL8dYk9ogoKUlUY6Gw5jgMpSRzsBNR_T_pBN6Y7nZ73le5B6IrgCcGU3GkTJqvWmAk3OMEAR-iMSEbjlAMcH3aejtB5CCuMgWHCTtGIyUQSidMzNFvY3rva-fajNNHU1W3flc179OrLuuzKbxuiZdgeXLWurY8Xtvtx_tPm0UI3rtW-K01lwwU6KXQV7OV-jtHy8eFt-hTPX2bP0_t5rCmRXZznGbaaYq25KDImdY5JkXNTCJwCQJGZLKEgck6BA6eiSIQACSnQXBAOho3Rza639e6rt6FTdRmMrSrdWNcHxQhPJBDKxIDiHWq8C8HbQrXDU9qvFcFqo08N-tRGn9rrGyLX-_Y-q21-CPz5GoDbHbCNut43w7P_9_0Cx1t8Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146951238</pqid></control><display><type>article</type><title>Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles</title><source>American Chemical Society Journals</source><creator>Zhao, Yinong ; Wei, Xingfei ; Hernandez, Rigoberto</creator><creatorcontrib>Zhao, Yinong ; Wei, Xingfei ; Hernandez, Rigoberto</creatorcontrib><description>Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built. In addressing this challenge, we first found the commensurability rules between the numbers of AuNPs and poly­(allylamine hydrochloride)­s (PAHs). This gives rise to a well-defined valency of a AuNP which is the maximum number of PAHs that it can accommodate. We further use an engineered block copolymer, which has a conductive middle block to mediate the distance between a dimer of AuNP. We argue that by controlling the length of conductive block that is connecting the AuNPs and their respective topology, we can have ENPNs potentially adopt multiple states necessary for primitive neuromorphic computing.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c06055</identifier><identifier>PMID: 39691907</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2024-12, Vol.128 (49), p.21164-21172</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a219t-ddb0ea20aa48fb39ad01fd4cf807555fbcb6258d42545428f688595752d8145c3</cites><orcidid>0000-0001-8526-7414 ; 0000-0001-5924-1579 ; 0000-0002-7113-0481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.4c06055$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.4c06055$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39691907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yinong</creatorcontrib><creatorcontrib>Wei, Xingfei</creatorcontrib><creatorcontrib>Hernandez, Rigoberto</creatorcontrib><title>Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built. In addressing this challenge, we first found the commensurability rules between the numbers of AuNPs and poly­(allylamine hydrochloride)­s (PAHs). This gives rise to a well-defined valency of a AuNP which is the maximum number of PAHs that it can accommodate. We further use an engineered block copolymer, which has a conductive middle block to mediate the distance between a dimer of AuNP. We argue that by controlling the length of conductive block that is connecting the AuNPs and their respective topology, we can have ENPNs potentially adopt multiple states necessary for primitive neuromorphic computing.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EolDYmVBGBlL8dYk9ogoKUlUY6Gw5jgMpSRzsBNR_T_pBN6Y7nZ73le5B6IrgCcGU3GkTJqvWmAk3OMEAR-iMSEbjlAMcH3aejtB5CCuMgWHCTtGIyUQSidMzNFvY3rva-fajNNHU1W3flc179OrLuuzKbxuiZdgeXLWurY8Xtvtx_tPm0UI3rtW-K01lwwU6KXQV7OV-jtHy8eFt-hTPX2bP0_t5rCmRXZznGbaaYq25KDImdY5JkXNTCJwCQJGZLKEgck6BA6eiSIQACSnQXBAOho3Rza639e6rt6FTdRmMrSrdWNcHxQhPJBDKxIDiHWq8C8HbQrXDU9qvFcFqo08N-tRGn9rrGyLX-_Y-q21-CPz5GoDbHbCNut43w7P_9_0Cx1t8Vw</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Zhao, Yinong</creator><creator>Wei, Xingfei</creator><creator>Hernandez, Rigoberto</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8526-7414</orcidid><orcidid>https://orcid.org/0000-0001-5924-1579</orcidid><orcidid>https://orcid.org/0000-0002-7113-0481</orcidid></search><sort><creationdate>20241212</creationdate><title>Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles</title><author>Zhao, Yinong ; Wei, Xingfei ; Hernandez, Rigoberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a219t-ddb0ea20aa48fb39ad01fd4cf807555fbcb6258d42545428f688595752d8145c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yinong</creatorcontrib><creatorcontrib>Wei, Xingfei</creatorcontrib><creatorcontrib>Hernandez, Rigoberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yinong</au><au>Wei, Xingfei</au><au>Hernandez, Rigoberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-12-12</date><risdate>2024</risdate><volume>128</volume><issue>49</issue><spage>21164</spage><epage>21172</epage><pages>21164-21172</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built. In addressing this challenge, we first found the commensurability rules between the numbers of AuNPs and poly­(allylamine hydrochloride)­s (PAHs). This gives rise to a well-defined valency of a AuNP which is the maximum number of PAHs that it can accommodate. We further use an engineered block copolymer, which has a conductive middle block to mediate the distance between a dimer of AuNP. We argue that by controlling the length of conductive block that is connecting the AuNPs and their respective topology, we can have ENPNs potentially adopt multiple states necessary for primitive neuromorphic computing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39691907</pmid><doi>10.1021/acs.jpcc.4c06055</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8526-7414</orcidid><orcidid>https://orcid.org/0000-0001-5924-1579</orcidid><orcidid>https://orcid.org/0000-0002-7113-0481</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2024-12, Vol.128 (49), p.21164-21172
issn 1932-7447
1932-7455
language eng
recordid cdi_proquest_miscellaneous_3146951238
source American Chemical Society Journals
subjects C: Physical Properties of Materials and Interfaces
title Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromorphic%20Computing%20Primitives%20Using%20Polymer-Networked%20Nanoparticles&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Zhao,%20Yinong&rft.date=2024-12-12&rft.volume=128&rft.issue=49&rft.spage=21164&rft.epage=21172&rft.pages=21164-21172&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c06055&rft_dat=%3Cproquest_cross%3E3146951238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146951238&rft_id=info:pmid/39691907&rfr_iscdi=true