Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles
Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particl...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2024-12, Vol.128 (49), p.21164-21172 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21172 |
---|---|
container_issue | 49 |
container_start_page | 21164 |
container_title | Journal of physical chemistry. C |
container_volume | 128 |
creator | Zhao, Yinong Wei, Xingfei Hernandez, Rigoberto |
description | Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built. In addressing this challenge, we first found the commensurability rules between the numbers of AuNPs and poly(allylamine hydrochloride)s (PAHs). This gives rise to a well-defined valency of a AuNP which is the maximum number of PAHs that it can accommodate. We further use an engineered block copolymer, which has a conductive middle block to mediate the distance between a dimer of AuNP. We argue that by controlling the length of conductive block that is connecting the AuNPs and their respective topology, we can have ENPNs potentially adopt multiple states necessary for primitive neuromorphic computing. |
doi_str_mv | 10.1021/acs.jpcc.4c06055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146951238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146951238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a219t-ddb0ea20aa48fb39ad01fd4cf807555fbcb6258d42545428f688595752d8145c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EolDYmVBGBlL8dYk9ogoKUlUY6Gw5jgMpSRzsBNR_T_pBN6Y7nZ73le5B6IrgCcGU3GkTJqvWmAk3OMEAR-iMSEbjlAMcH3aejtB5CCuMgWHCTtGIyUQSidMzNFvY3rva-fajNNHU1W3flc179OrLuuzKbxuiZdgeXLWurY8Xtvtx_tPm0UI3rtW-K01lwwU6KXQV7OV-jtHy8eFt-hTPX2bP0_t5rCmRXZznGbaaYq25KDImdY5JkXNTCJwCQJGZLKEgck6BA6eiSIQACSnQXBAOho3Rza639e6rt6FTdRmMrSrdWNcHxQhPJBDKxIDiHWq8C8HbQrXDU9qvFcFqo08N-tRGn9rrGyLX-_Y-q21-CPz5GoDbHbCNut43w7P_9_0Cx1t8Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146951238</pqid></control><display><type>article</type><title>Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles</title><source>American Chemical Society Journals</source><creator>Zhao, Yinong ; Wei, Xingfei ; Hernandez, Rigoberto</creator><creatorcontrib>Zhao, Yinong ; Wei, Xingfei ; Hernandez, Rigoberto</creatorcontrib><description>Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built. In addressing this challenge, we first found the commensurability rules between the numbers of AuNPs and poly(allylamine hydrochloride)s (PAHs). This gives rise to a well-defined valency of a AuNP which is the maximum number of PAHs that it can accommodate. We further use an engineered block copolymer, which has a conductive middle block to mediate the distance between a dimer of AuNP. We argue that by controlling the length of conductive block that is connecting the AuNPs and their respective topology, we can have ENPNs potentially adopt multiple states necessary for primitive neuromorphic computing.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c06055</identifier><identifier>PMID: 39691907</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2024-12, Vol.128 (49), p.21164-21172</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a219t-ddb0ea20aa48fb39ad01fd4cf807555fbcb6258d42545428f688595752d8145c3</cites><orcidid>0000-0001-8526-7414 ; 0000-0001-5924-1579 ; 0000-0002-7113-0481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.4c06055$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.4c06055$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39691907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yinong</creatorcontrib><creatorcontrib>Wei, Xingfei</creatorcontrib><creatorcontrib>Hernandez, Rigoberto</creatorcontrib><title>Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built. In addressing this challenge, we first found the commensurability rules between the numbers of AuNPs and poly(allylamine hydrochloride)s (PAHs). This gives rise to a well-defined valency of a AuNP which is the maximum number of PAHs that it can accommodate. We further use an engineered block copolymer, which has a conductive middle block to mediate the distance between a dimer of AuNP. We argue that by controlling the length of conductive block that is connecting the AuNPs and their respective topology, we can have ENPNs potentially adopt multiple states necessary for primitive neuromorphic computing.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EolDYmVBGBlL8dYk9ogoKUlUY6Gw5jgMpSRzsBNR_T_pBN6Y7nZ73le5B6IrgCcGU3GkTJqvWmAk3OMEAR-iMSEbjlAMcH3aejtB5CCuMgWHCTtGIyUQSidMzNFvY3rva-fajNNHU1W3flc179OrLuuzKbxuiZdgeXLWurY8Xtvtx_tPm0UI3rtW-K01lwwU6KXQV7OV-jtHy8eFt-hTPX2bP0_t5rCmRXZznGbaaYq25KDImdY5JkXNTCJwCQJGZLKEgck6BA6eiSIQACSnQXBAOho3Rza639e6rt6FTdRmMrSrdWNcHxQhPJBDKxIDiHWq8C8HbQrXDU9qvFcFqo08N-tRGn9rrGyLX-_Y-q21-CPz5GoDbHbCNut43w7P_9_0Cx1t8Vw</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Zhao, Yinong</creator><creator>Wei, Xingfei</creator><creator>Hernandez, Rigoberto</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8526-7414</orcidid><orcidid>https://orcid.org/0000-0001-5924-1579</orcidid><orcidid>https://orcid.org/0000-0002-7113-0481</orcidid></search><sort><creationdate>20241212</creationdate><title>Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles</title><author>Zhao, Yinong ; Wei, Xingfei ; Hernandez, Rigoberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a219t-ddb0ea20aa48fb39ad01fd4cf807555fbcb6258d42545428f688595752d8145c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yinong</creatorcontrib><creatorcontrib>Wei, Xingfei</creatorcontrib><creatorcontrib>Hernandez, Rigoberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yinong</au><au>Wei, Xingfei</au><au>Hernandez, Rigoberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-12-12</date><risdate>2024</risdate><volume>128</volume><issue>49</issue><spage>21164</spage><epage>21172</epage><pages>21164-21172</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built. In addressing this challenge, we first found the commensurability rules between the numbers of AuNPs and poly(allylamine hydrochloride)s (PAHs). This gives rise to a well-defined valency of a AuNP which is the maximum number of PAHs that it can accommodate. We further use an engineered block copolymer, which has a conductive middle block to mediate the distance between a dimer of AuNP. We argue that by controlling the length of conductive block that is connecting the AuNPs and their respective topology, we can have ENPNs potentially adopt multiple states necessary for primitive neuromorphic computing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39691907</pmid><doi>10.1021/acs.jpcc.4c06055</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8526-7414</orcidid><orcidid>https://orcid.org/0000-0001-5924-1579</orcidid><orcidid>https://orcid.org/0000-0002-7113-0481</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2024-12, Vol.128 (49), p.21164-21172 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146951238 |
source | American Chemical Society Journals |
subjects | C: Physical Properties of Materials and Interfaces |
title | Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromorphic%20Computing%20Primitives%20Using%20Polymer-Networked%20Nanoparticles&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Zhao,%20Yinong&rft.date=2024-12-12&rft.volume=128&rft.issue=49&rft.spage=21164&rft.epage=21172&rft.pages=21164-21172&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c06055&rft_dat=%3Cproquest_cross%3E3146951238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146951238&rft_id=info:pmid/39691907&rfr_iscdi=true |