Electron-Beam-Induced Negative Differential Transconductance Homojunction Device Based on van der Waals Materials for Functionally Complete Ternary Computing
Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which rem...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-12, Vol.18 (52), p.35276-35285 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35285 |
---|---|
container_issue | 52 |
container_start_page | 35276 |
container_title | ACS nano |
container_volume | 18 |
creator | Andreev, Maksim Kang, Juncheol Lee, Taeran Choi, Jae-Woong Lee, Je-Jun Choo, Hyongsuk Lee, Sehee Park, Jin-Hong |
description | Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which remains unrealized with current NDT technologies, posing a critical limitation for higher-level circuit design. Additionally, NDT devices typically rely on heterojunctions, complicating fabrication and impacting reliability due to the introduction of additional materials and interfaces. Here, we utilize an electron beam to develop tungsten diselenide (WSe2) homojunction NDT devices with W-shaped current–voltage (I–V) characteristics. We demonstrate that electron beam enables the manipulation of Se atoms in WSe2, facilitating controllable and spatially precise tailoring of the WSe2 work function. The electron-beam treatment applied to a part of the WSe2 channel induces a lateral homojunction and ultimately results in the W-shaped I–V curves, which enable both one-input and two-input ternary logic gates. We propose and implement a balanced circuit design for two-input ternary NAND, AND, NOR, and OR gates, featuring a low device count, full-swing operation, and minimized output signal variations. Together with three types of ternary inverters also designed in this work, they form a functionally complete set of ternary logic gatesa prerequisite for practical ternary computing. This work addresses a critical gap in the development of NDT-based ternary computing by ensuring functional completeness and highlights the versatility of electron-beam treatment as an engineering tool for tailoring the properties of two-dimensional van der Waals materials. |
doi_str_mv | 10.1021/acsnano.4c11169 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146949343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146949343</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-8428f7a2043e8749933e380b81ebe499124f7afd220c56c85682cfcc04809cc03</originalsourceid><addsrcrecordid>eNp1kc1O3DAUha2qqFDadXeVl5VQwI49ib0sAxQkoJup2l10x7lBHjn21HZG4mF413o0KTtW98ffObryIeQLZ-ec1fwCTPLgw7k0nPNGvyMnXIumYqr58_61X_Bj8jGlDWOLVrXNB3IsdKNZy8UJebl2aHIMvrpEGKs7308Ge_qIT5DtDumVHQaM6LMFR1cRfDJhz2TwBultGMNm8ibb4OkV7mzZXUIqBmXegac9RvobwCX6ABmj3XdDiPRmFoFzz3QZxq3DjHSF0UM8LKZs_dMncjQUCX6e6yn5dXO9Wt5W9z9_3C2_31dQ8zZXStZqaKFmUqBqpdZCoFBsrTiusYy8luV56OuamUVj1KJRtRmMYVIxXYo4Jd8OvtsY_k6YcjfaZNA58Bim1AkuGy21kKKgFwfUxJBSxKHbRjuWqzvOun0m3ZxJN2dSFF9n82k9Yv_K_w-hAGcHoCi7TZjKJ7j0pt0_SKeaeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146949343</pqid></control><display><type>article</type><title>Electron-Beam-Induced Negative Differential Transconductance Homojunction Device Based on van der Waals Materials for Functionally Complete Ternary Computing</title><source>ACS Publications</source><creator>Andreev, Maksim ; Kang, Juncheol ; Lee, Taeran ; Choi, Jae-Woong ; Lee, Je-Jun ; Choo, Hyongsuk ; Lee, Sehee ; Park, Jin-Hong</creator><creatorcontrib>Andreev, Maksim ; Kang, Juncheol ; Lee, Taeran ; Choi, Jae-Woong ; Lee, Je-Jun ; Choo, Hyongsuk ; Lee, Sehee ; Park, Jin-Hong</creatorcontrib><description>Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which remains unrealized with current NDT technologies, posing a critical limitation for higher-level circuit design. Additionally, NDT devices typically rely on heterojunctions, complicating fabrication and impacting reliability due to the introduction of additional materials and interfaces. Here, we utilize an electron beam to develop tungsten diselenide (WSe2) homojunction NDT devices with W-shaped current–voltage (I–V) characteristics. We demonstrate that electron beam enables the manipulation of Se atoms in WSe2, facilitating controllable and spatially precise tailoring of the WSe2 work function. The electron-beam treatment applied to a part of the WSe2 channel induces a lateral homojunction and ultimately results in the W-shaped I–V curves, which enable both one-input and two-input ternary logic gates. We propose and implement a balanced circuit design for two-input ternary NAND, AND, NOR, and OR gates, featuring a low device count, full-swing operation, and minimized output signal variations. Together with three types of ternary inverters also designed in this work, they form a functionally complete set of ternary logic gatesa prerequisite for practical ternary computing. This work addresses a critical gap in the development of NDT-based ternary computing by ensuring functional completeness and highlights the versatility of electron-beam treatment as an engineering tool for tailoring the properties of two-dimensional van der Waals materials.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c11169</identifier><identifier>PMID: 39690713</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-12, Vol.18 (52), p.35276-35285</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-8428f7a2043e8749933e380b81ebe499124f7afd220c56c85682cfcc04809cc03</cites><orcidid>0000-0001-8401-6920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c11169$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c11169$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39690713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreev, Maksim</creatorcontrib><creatorcontrib>Kang, Juncheol</creatorcontrib><creatorcontrib>Lee, Taeran</creatorcontrib><creatorcontrib>Choi, Jae-Woong</creatorcontrib><creatorcontrib>Lee, Je-Jun</creatorcontrib><creatorcontrib>Choo, Hyongsuk</creatorcontrib><creatorcontrib>Lee, Sehee</creatorcontrib><creatorcontrib>Park, Jin-Hong</creatorcontrib><title>Electron-Beam-Induced Negative Differential Transconductance Homojunction Device Based on van der Waals Materials for Functionally Complete Ternary Computing</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which remains unrealized with current NDT technologies, posing a critical limitation for higher-level circuit design. Additionally, NDT devices typically rely on heterojunctions, complicating fabrication and impacting reliability due to the introduction of additional materials and interfaces. Here, we utilize an electron beam to develop tungsten diselenide (WSe2) homojunction NDT devices with W-shaped current–voltage (I–V) characteristics. We demonstrate that electron beam enables the manipulation of Se atoms in WSe2, facilitating controllable and spatially precise tailoring of the WSe2 work function. The electron-beam treatment applied to a part of the WSe2 channel induces a lateral homojunction and ultimately results in the W-shaped I–V curves, which enable both one-input and two-input ternary logic gates. We propose and implement a balanced circuit design for two-input ternary NAND, AND, NOR, and OR gates, featuring a low device count, full-swing operation, and minimized output signal variations. Together with three types of ternary inverters also designed in this work, they form a functionally complete set of ternary logic gatesa prerequisite for practical ternary computing. This work addresses a critical gap in the development of NDT-based ternary computing by ensuring functional completeness and highlights the versatility of electron-beam treatment as an engineering tool for tailoring the properties of two-dimensional van der Waals materials.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kc1O3DAUha2qqFDadXeVl5VQwI49ib0sAxQkoJup2l10x7lBHjn21HZG4mF413o0KTtW98ffObryIeQLZ-ec1fwCTPLgw7k0nPNGvyMnXIumYqr58_61X_Bj8jGlDWOLVrXNB3IsdKNZy8UJebl2aHIMvrpEGKs7308Ge_qIT5DtDumVHQaM6LMFR1cRfDJhz2TwBultGMNm8ibb4OkV7mzZXUIqBmXegac9RvobwCX6ABmj3XdDiPRmFoFzz3QZxq3DjHSF0UM8LKZs_dMncjQUCX6e6yn5dXO9Wt5W9z9_3C2_31dQ8zZXStZqaKFmUqBqpdZCoFBsrTiusYy8luV56OuamUVj1KJRtRmMYVIxXYo4Jd8OvtsY_k6YcjfaZNA58Bim1AkuGy21kKKgFwfUxJBSxKHbRjuWqzvOun0m3ZxJN2dSFF9n82k9Yv_K_w-hAGcHoCi7TZjKJ7j0pt0_SKeaeg</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Andreev, Maksim</creator><creator>Kang, Juncheol</creator><creator>Lee, Taeran</creator><creator>Choi, Jae-Woong</creator><creator>Lee, Je-Jun</creator><creator>Choo, Hyongsuk</creator><creator>Lee, Sehee</creator><creator>Park, Jin-Hong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8401-6920</orcidid></search><sort><creationdate>20241231</creationdate><title>Electron-Beam-Induced Negative Differential Transconductance Homojunction Device Based on van der Waals Materials for Functionally Complete Ternary Computing</title><author>Andreev, Maksim ; Kang, Juncheol ; Lee, Taeran ; Choi, Jae-Woong ; Lee, Je-Jun ; Choo, Hyongsuk ; Lee, Sehee ; Park, Jin-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-8428f7a2043e8749933e380b81ebe499124f7afd220c56c85682cfcc04809cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreev, Maksim</creatorcontrib><creatorcontrib>Kang, Juncheol</creatorcontrib><creatorcontrib>Lee, Taeran</creatorcontrib><creatorcontrib>Choi, Jae-Woong</creatorcontrib><creatorcontrib>Lee, Je-Jun</creatorcontrib><creatorcontrib>Choo, Hyongsuk</creatorcontrib><creatorcontrib>Lee, Sehee</creatorcontrib><creatorcontrib>Park, Jin-Hong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreev, Maksim</au><au>Kang, Juncheol</au><au>Lee, Taeran</au><au>Choi, Jae-Woong</au><au>Lee, Je-Jun</au><au>Choo, Hyongsuk</au><au>Lee, Sehee</au><au>Park, Jin-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-Beam-Induced Negative Differential Transconductance Homojunction Device Based on van der Waals Materials for Functionally Complete Ternary Computing</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-12-31</date><risdate>2024</risdate><volume>18</volume><issue>52</issue><spage>35276</spage><epage>35285</epage><pages>35276-35285</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which remains unrealized with current NDT technologies, posing a critical limitation for higher-level circuit design. Additionally, NDT devices typically rely on heterojunctions, complicating fabrication and impacting reliability due to the introduction of additional materials and interfaces. Here, we utilize an electron beam to develop tungsten diselenide (WSe2) homojunction NDT devices with W-shaped current–voltage (I–V) characteristics. We demonstrate that electron beam enables the manipulation of Se atoms in WSe2, facilitating controllable and spatially precise tailoring of the WSe2 work function. The electron-beam treatment applied to a part of the WSe2 channel induces a lateral homojunction and ultimately results in the W-shaped I–V curves, which enable both one-input and two-input ternary logic gates. We propose and implement a balanced circuit design for two-input ternary NAND, AND, NOR, and OR gates, featuring a low device count, full-swing operation, and minimized output signal variations. Together with three types of ternary inverters also designed in this work, they form a functionally complete set of ternary logic gatesa prerequisite for practical ternary computing. This work addresses a critical gap in the development of NDT-based ternary computing by ensuring functional completeness and highlights the versatility of electron-beam treatment as an engineering tool for tailoring the properties of two-dimensional van der Waals materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39690713</pmid><doi>10.1021/acsnano.4c11169</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8401-6920</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-12, Vol.18 (52), p.35276-35285 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_3146949343 |
source | ACS Publications |
title | Electron-Beam-Induced Negative Differential Transconductance Homojunction Device Based on van der Waals Materials for Functionally Complete Ternary Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-Beam-Induced%20Negative%20Differential%20Transconductance%20Homojunction%20Device%20Based%20on%20van%20der%20Waals%20Materials%20for%20Functionally%20Complete%20Ternary%20Computing&rft.jtitle=ACS%20nano&rft.au=Andreev,%20Maksim&rft.date=2024-12-31&rft.volume=18&rft.issue=52&rft.spage=35276&rft.epage=35285&rft.pages=35276-35285&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c11169&rft_dat=%3Cproquest_cross%3E3146949343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146949343&rft_id=info:pmid/39690713&rfr_iscdi=true |