Motor pool selectivity of neuromuscular degeneration in type I spinal muscular atrophy is conserved between human and mouse

Spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein. Even though SMN is ubiquitously expressed, the disease selectively affects motor neurons, leading to progressive muscle weakness. Even among motor neurons, certain motor units appear more clinically res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2024-12
Hauptverfasser: Lee, Justin C, Chung, Wendy K, Pisapia, David J, Henderson, Christopher E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Human molecular genetics
container_volume
creator Lee, Justin C
Chung, Wendy K
Pisapia, David J
Henderson, Christopher E
description Spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein. Even though SMN is ubiquitously expressed, the disease selectively affects motor neurons, leading to progressive muscle weakness. Even among motor neurons, certain motor units appear more clinically resistant to SMA. To quantitatively survey selective resistance, we studied extensive neuromuscular autopsies of Type I SMA patients and age-matched controls. We found highly divergent degrees of degeneration of neighboring motor units, even within individual cranial nerves or a single anatomical area such as the neck. Examination of a Type I SMA patient maintained on life support for 17 years found that most muscles were atrophied, but the diaphragm was strikingly preserved. Nevertheless, some resistant human muscles with preserved morphology displayed nearly complete conversion to slow Type I myofibers. Remarkably, a similar pattern of selective resistance was observed in the SMNΔ7 mouse model. Overall, differential motor unit vulnerability in human Type I SMA suggests the existence of potent, motor unit-specific disease modifiers. Mechanisms that confer selective resistance to SMA may represent therapeutic targets independent of the SMN protein, particularly in patients with neuromuscular weakness refractory to current treatments.
doi_str_mv 10.1093/hmg/ddae190
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146948804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146948804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-64e473ad76b43c8ecb21cbd643c0241463fdf0cb2354d28cd3941779dfd37b1c3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMobk5P3iVHQeqSJrbNUcQfg4kXPZc0-bpF2qQm6WT4zxvZ3OmDl4eX730QuqTklhLB5ut-NddaAhXkCE0pL0iWk4odoykRBc8KQYoJOgvhkxBacFaeogkTKa04m6KfVxedx4NzHQ7QgYpmY-IWuxZbGL3rx6DGTnqsYQUWvIzGWWwsjtsB8AKHwVjZ4QMmo3fDeotNwMrZAH4DGjcQvwEsXo-9tFhajXs3BjhHJ63sAlzs7wx9PD2-P7xky7fnxcP9MlM55TErOPCSSV0WDWeqAtXkVDU6TVEk52kva3VLUsruuM4rpZngtCyFbjUrG6rYDF3vegfvvkYIse5NUNB10kL6o2apQ_CqIjyhNztUeReCh7YevOml39aU1H-262S73ttO9NW-eGx60Af2Xy_7BQKYfw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146948804</pqid></control><display><type>article</type><title>Motor pool selectivity of neuromuscular degeneration in type I spinal muscular atrophy is conserved between human and mouse</title><source>Oxford University Press Journals Current</source><creator>Lee, Justin C ; Chung, Wendy K ; Pisapia, David J ; Henderson, Christopher E</creator><creatorcontrib>Lee, Justin C ; Chung, Wendy K ; Pisapia, David J ; Henderson, Christopher E</creatorcontrib><description>Spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein. Even though SMN is ubiquitously expressed, the disease selectively affects motor neurons, leading to progressive muscle weakness. Even among motor neurons, certain motor units appear more clinically resistant to SMA. To quantitatively survey selective resistance, we studied extensive neuromuscular autopsies of Type I SMA patients and age-matched controls. We found highly divergent degrees of degeneration of neighboring motor units, even within individual cranial nerves or a single anatomical area such as the neck. Examination of a Type I SMA patient maintained on life support for 17 years found that most muscles were atrophied, but the diaphragm was strikingly preserved. Nevertheless, some resistant human muscles with preserved morphology displayed nearly complete conversion to slow Type I myofibers. Remarkably, a similar pattern of selective resistance was observed in the SMNΔ7 mouse model. Overall, differential motor unit vulnerability in human Type I SMA suggests the existence of potent, motor unit-specific disease modifiers. Mechanisms that confer selective resistance to SMA may represent therapeutic targets independent of the SMN protein, particularly in patients with neuromuscular weakness refractory to current treatments.</description><identifier>ISSN: 0964-6906</identifier><identifier>ISSN: 1460-2083</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddae190</identifier><identifier>PMID: 39690843</identifier><language>eng</language><publisher>England</publisher><ispartof>Human molecular genetics, 2024-12</ispartof><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-64e473ad76b43c8ecb21cbd643c0241463fdf0cb2354d28cd3941779dfd37b1c3</cites><orcidid>0009-0008-3200-1020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39690843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Justin C</creatorcontrib><creatorcontrib>Chung, Wendy K</creatorcontrib><creatorcontrib>Pisapia, David J</creatorcontrib><creatorcontrib>Henderson, Christopher E</creatorcontrib><title>Motor pool selectivity of neuromuscular degeneration in type I spinal muscular atrophy is conserved between human and mouse</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein. Even though SMN is ubiquitously expressed, the disease selectively affects motor neurons, leading to progressive muscle weakness. Even among motor neurons, certain motor units appear more clinically resistant to SMA. To quantitatively survey selective resistance, we studied extensive neuromuscular autopsies of Type I SMA patients and age-matched controls. We found highly divergent degrees of degeneration of neighboring motor units, even within individual cranial nerves or a single anatomical area such as the neck. Examination of a Type I SMA patient maintained on life support for 17 years found that most muscles were atrophied, but the diaphragm was strikingly preserved. Nevertheless, some resistant human muscles with preserved morphology displayed nearly complete conversion to slow Type I myofibers. Remarkably, a similar pattern of selective resistance was observed in the SMNΔ7 mouse model. Overall, differential motor unit vulnerability in human Type I SMA suggests the existence of potent, motor unit-specific disease modifiers. Mechanisms that confer selective resistance to SMA may represent therapeutic targets independent of the SMN protein, particularly in patients with neuromuscular weakness refractory to current treatments.</description><issn>0964-6906</issn><issn>1460-2083</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMobk5P3iVHQeqSJrbNUcQfg4kXPZc0-bpF2qQm6WT4zxvZ3OmDl4eX730QuqTklhLB5ut-NddaAhXkCE0pL0iWk4odoykRBc8KQYoJOgvhkxBacFaeogkTKa04m6KfVxedx4NzHQ7QgYpmY-IWuxZbGL3rx6DGTnqsYQUWvIzGWWwsjtsB8AKHwVjZ4QMmo3fDeotNwMrZAH4DGjcQvwEsXo-9tFhajXs3BjhHJ63sAlzs7wx9PD2-P7xky7fnxcP9MlM55TErOPCSSV0WDWeqAtXkVDU6TVEk52kva3VLUsruuM4rpZngtCyFbjUrG6rYDF3vegfvvkYIse5NUNB10kL6o2apQ_CqIjyhNztUeReCh7YevOml39aU1H-262S73ttO9NW-eGx60Af2Xy_7BQKYfw0</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Lee, Justin C</creator><creator>Chung, Wendy K</creator><creator>Pisapia, David J</creator><creator>Henderson, Christopher E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-3200-1020</orcidid></search><sort><creationdate>20241218</creationdate><title>Motor pool selectivity of neuromuscular degeneration in type I spinal muscular atrophy is conserved between human and mouse</title><author>Lee, Justin C ; Chung, Wendy K ; Pisapia, David J ; Henderson, Christopher E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-64e473ad76b43c8ecb21cbd643c0241463fdf0cb2354d28cd3941779dfd37b1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Justin C</creatorcontrib><creatorcontrib>Chung, Wendy K</creatorcontrib><creatorcontrib>Pisapia, David J</creatorcontrib><creatorcontrib>Henderson, Christopher E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Justin C</au><au>Chung, Wendy K</au><au>Pisapia, David J</au><au>Henderson, Christopher E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motor pool selectivity of neuromuscular degeneration in type I spinal muscular atrophy is conserved between human and mouse</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2024-12-18</date><risdate>2024</risdate><issn>0964-6906</issn><issn>1460-2083</issn><eissn>1460-2083</eissn><abstract>Spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein. Even though SMN is ubiquitously expressed, the disease selectively affects motor neurons, leading to progressive muscle weakness. Even among motor neurons, certain motor units appear more clinically resistant to SMA. To quantitatively survey selective resistance, we studied extensive neuromuscular autopsies of Type I SMA patients and age-matched controls. We found highly divergent degrees of degeneration of neighboring motor units, even within individual cranial nerves or a single anatomical area such as the neck. Examination of a Type I SMA patient maintained on life support for 17 years found that most muscles were atrophied, but the diaphragm was strikingly preserved. Nevertheless, some resistant human muscles with preserved morphology displayed nearly complete conversion to slow Type I myofibers. Remarkably, a similar pattern of selective resistance was observed in the SMNΔ7 mouse model. Overall, differential motor unit vulnerability in human Type I SMA suggests the existence of potent, motor unit-specific disease modifiers. Mechanisms that confer selective resistance to SMA may represent therapeutic targets independent of the SMN protein, particularly in patients with neuromuscular weakness refractory to current treatments.</abstract><cop>England</cop><pmid>39690843</pmid><doi>10.1093/hmg/ddae190</doi><orcidid>https://orcid.org/0009-0008-3200-1020</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2024-12
issn 0964-6906
1460-2083
1460-2083
language eng
recordid cdi_proquest_miscellaneous_3146948804
source Oxford University Press Journals Current
title Motor pool selectivity of neuromuscular degeneration in type I spinal muscular atrophy is conserved between human and mouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motor%20pool%20selectivity%20of%20neuromuscular%20degeneration%20in%20type%20I%20spinal%20muscular%20atrophy%20is%20conserved%20between%20human%20and%20mouse&rft.jtitle=Human%20molecular%20genetics&rft.au=Lee,%20Justin%20C&rft.date=2024-12-18&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddae190&rft_dat=%3Cproquest_cross%3E3146948804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146948804&rft_id=info:pmid/39690843&rfr_iscdi=true