The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors
ABSTRACT Objectives The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors. Methods The study is implemented on the data of 942 patients which contains of 707 patients with...
Gespeichert in:
Veröffentlicht in: | International journal of rheumatic diseases 2024-12, Vol.27 (12), p.e70004-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e70004 |
container_title | International journal of rheumatic diseases |
container_volume | 27 |
creator | Zhang, Zhaojuan Pan, Yiling Lu, Yanjie Ye, Lusi Zheng, Mo Zhang, Guodao Chen, Dan |
description | ABSTRACT
Objectives
The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors.
Methods
The study is implemented on the data of 942 patients which contains of 707 patients with axSpA and 235 patients with non‐axSpA. To begin with, the patients were split into training (n = 753) and validation (n = 189) cohorts. Secondly, multiple assessors manually extract the features of active inflammation (bone marrow edema) and structural lesions (erosions, sclerosis, ankylosis, joint space changes, and fat lesions). Meanwhile, we utilize 11 machine learning models and TabNet to develop imaging models, which contain six clinical risk factors for clinical models and combined clinical‐imaging models. Finally, the diagnostic performance of the aforementioned models was evaluated in the validation cohort including accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, F1‐score, and Matthew's correlation coefficient (MCC).
Results
Six features were extracted from the imaging findings. The combined clinical‐imaging models outperform the clinical and imaging models. In contrast, the combined clinical‐imaging model via TabNet (CCMRT) achieved the optimal AUC of 0.93(95% CI: 0.89, 0.97). Furthermore, it is observed that the bilateral joint space changes and right‐sided erosions, HLA‐B27 positivity, and CRP values significantly affected axSpA diagnostic prediction.
Conclusion
The prediction model based on clinical risk factors and SIJ‐MRI imaging features can distinguish axSpA and non‐axSpA effectively. In addition, the TabNet demonstrates superior diagnostic efficacy compared with machine learning models. |
doi_str_mv | 10.1111/1756-185X.70004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146948229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146948229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2554-968016b861b71f55343bb4560c1a8fe50d64b36505342b40278e5cdf6cd5a9253</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0E4qMwsyFLLCyldmI78VgVCpXKh0qR2CwncYrBiYudCPrvcWjpwMItd7p77tXpPQBOMbrEIQY4oayPU_pymSCEyA443HZ2tzXBB-DI-zeEGI5Zsg8OYs44IpwdAjN_VXAus3vVwDtbKANL6-CVlovael0v4PBLSwOflrYuVsZK17w63WgPn3-md7MJnFRy0dVjXRcheyjrAo6MrnUeNmfav8OxzBvr_DHYK6Xx6mSTe-B5fD0f3fanDzeT0XDazyNKSZ-zFGGWpQxnCS4pjUmcZYQylGOZloqigpEsZhSFSZQRFCWponlRsrygkkc07oGLte7S2Y9W-UZU2ufKGFkr23oRY8I4SaOIB_T8D_pmW1eH6zqKRxHjjAVqsKZyZ713qhRLpyvpVgIj0T1CdFaLznbx84iwcbbRbbNKFVv-1_kA0DXwqY1a_acnho_TtfA37e-QnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149226966</pqid></control><display><type>article</type><title>The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Zhaojuan ; Pan, Yiling ; Lu, Yanjie ; Ye, Lusi ; Zheng, Mo ; Zhang, Guodao ; Chen, Dan</creator><creatorcontrib>Zhang, Zhaojuan ; Pan, Yiling ; Lu, Yanjie ; Ye, Lusi ; Zheng, Mo ; Zhang, Guodao ; Chen, Dan</creatorcontrib><description>ABSTRACT
Objectives
The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors.
Methods
The study is implemented on the data of 942 patients which contains of 707 patients with axSpA and 235 patients with non‐axSpA. To begin with, the patients were split into training (n = 753) and validation (n = 189) cohorts. Secondly, multiple assessors manually extract the features of active inflammation (bone marrow edema) and structural lesions (erosions, sclerosis, ankylosis, joint space changes, and fat lesions). Meanwhile, we utilize 11 machine learning models and TabNet to develop imaging models, which contain six clinical risk factors for clinical models and combined clinical‐imaging models. Finally, the diagnostic performance of the aforementioned models was evaluated in the validation cohort including accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, F1‐score, and Matthew's correlation coefficient (MCC).
Results
Six features were extracted from the imaging findings. The combined clinical‐imaging models outperform the clinical and imaging models. In contrast, the combined clinical‐imaging model via TabNet (CCMRT) achieved the optimal AUC of 0.93(95% CI: 0.89, 0.97). Furthermore, it is observed that the bilateral joint space changes and right‐sided erosions, HLA‐B27 positivity, and CRP values significantly affected axSpA diagnostic prediction.
Conclusion
The prediction model based on clinical risk factors and SIJ‐MRI imaging features can distinguish axSpA and non‐axSpA effectively. In addition, the TabNet demonstrates superior diagnostic efficacy compared with machine learning models.</description><identifier>ISSN: 1756-1841</identifier><identifier>ISSN: 1756-185X</identifier><identifier>EISSN: 1756-185X</identifier><identifier>DOI: 10.1111/1756-185X.70004</identifier><identifier>PMID: 39690496</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adult ; Ankylosis ; Arthritis ; axial spondyloarthritis ; Axial Spondyloarthritis - diagnostic imaging ; Bone imaging ; clinical risk factors ; Decision Support Techniques ; Edema ; Female ; Humans ; Image Interpretation, Computer-Assisted ; imaging findings ; Inflammatory diseases ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging ; Male ; Middle Aged ; Neural Networks, Computer ; Prediction models ; Predictive Value of Tests ; Reproducibility of Results ; Rheumatic diseases ; Risk Factors ; Sacroiliac Joint - diagnostic imaging ; Sacroiliac Joint - pathology ; Sclerosis ; Sensitivity analysis ; TabNet</subject><ispartof>International journal of rheumatic diseases, 2024-12, Vol.27 (12), p.e70004-n/a</ispartof><rights>2024 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2554-968016b861b71f55343bb4560c1a8fe50d64b36505342b40278e5cdf6cd5a9253</cites><orcidid>0009-0007-6905-6706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1756-185X.70004$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1756-185X.70004$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39690496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhaojuan</creatorcontrib><creatorcontrib>Pan, Yiling</creatorcontrib><creatorcontrib>Lu, Yanjie</creatorcontrib><creatorcontrib>Ye, Lusi</creatorcontrib><creatorcontrib>Zheng, Mo</creatorcontrib><creatorcontrib>Zhang, Guodao</creatorcontrib><creatorcontrib>Chen, Dan</creatorcontrib><title>The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors</title><title>International journal of rheumatic diseases</title><addtitle>Int J Rheum Dis</addtitle><description>ABSTRACT
Objectives
The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors.
Methods
The study is implemented on the data of 942 patients which contains of 707 patients with axSpA and 235 patients with non‐axSpA. To begin with, the patients were split into training (n = 753) and validation (n = 189) cohorts. Secondly, multiple assessors manually extract the features of active inflammation (bone marrow edema) and structural lesions (erosions, sclerosis, ankylosis, joint space changes, and fat lesions). Meanwhile, we utilize 11 machine learning models and TabNet to develop imaging models, which contain six clinical risk factors for clinical models and combined clinical‐imaging models. Finally, the diagnostic performance of the aforementioned models was evaluated in the validation cohort including accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, F1‐score, and Matthew's correlation coefficient (MCC).
Results
Six features were extracted from the imaging findings. The combined clinical‐imaging models outperform the clinical and imaging models. In contrast, the combined clinical‐imaging model via TabNet (CCMRT) achieved the optimal AUC of 0.93(95% CI: 0.89, 0.97). Furthermore, it is observed that the bilateral joint space changes and right‐sided erosions, HLA‐B27 positivity, and CRP values significantly affected axSpA diagnostic prediction.
Conclusion
The prediction model based on clinical risk factors and SIJ‐MRI imaging features can distinguish axSpA and non‐axSpA effectively. In addition, the TabNet demonstrates superior diagnostic efficacy compared with machine learning models.</description><subject>Adult</subject><subject>Ankylosis</subject><subject>Arthritis</subject><subject>axial spondyloarthritis</subject><subject>Axial Spondyloarthritis - diagnostic imaging</subject><subject>Bone imaging</subject><subject>clinical risk factors</subject><subject>Decision Support Techniques</subject><subject>Edema</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>imaging findings</subject><subject>Inflammatory diseases</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks, Computer</subject><subject>Prediction models</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Rheumatic diseases</subject><subject>Risk Factors</subject><subject>Sacroiliac Joint - diagnostic imaging</subject><subject>Sacroiliac Joint - pathology</subject><subject>Sclerosis</subject><subject>Sensitivity analysis</subject><subject>TabNet</subject><issn>1756-1841</issn><issn>1756-185X</issn><issn>1756-185X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PwzAQhi0E4qMwsyFLLCyldmI78VgVCpXKh0qR2CwncYrBiYudCPrvcWjpwMItd7p77tXpPQBOMbrEIQY4oayPU_pymSCEyA443HZ2tzXBB-DI-zeEGI5Zsg8OYs44IpwdAjN_VXAus3vVwDtbKANL6-CVlovael0v4PBLSwOflrYuVsZK17w63WgPn3-md7MJnFRy0dVjXRcheyjrAo6MrnUeNmfav8OxzBvr_DHYK6Xx6mSTe-B5fD0f3fanDzeT0XDazyNKSZ-zFGGWpQxnCS4pjUmcZYQylGOZloqigpEsZhSFSZQRFCWponlRsrygkkc07oGLte7S2Y9W-UZU2ufKGFkr23oRY8I4SaOIB_T8D_pmW1eH6zqKRxHjjAVqsKZyZ713qhRLpyvpVgIj0T1CdFaLznbx84iwcbbRbbNKFVv-1_kA0DXwqY1a_acnho_TtfA37e-QnA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zhang, Zhaojuan</creator><creator>Pan, Yiling</creator><creator>Lu, Yanjie</creator><creator>Ye, Lusi</creator><creator>Zheng, Mo</creator><creator>Zhang, Guodao</creator><creator>Chen, Dan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-6905-6706</orcidid></search><sort><creationdate>202412</creationdate><title>The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors</title><author>Zhang, Zhaojuan ; Pan, Yiling ; Lu, Yanjie ; Ye, Lusi ; Zheng, Mo ; Zhang, Guodao ; Chen, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2554-968016b861b71f55343bb4560c1a8fe50d64b36505342b40278e5cdf6cd5a9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Ankylosis</topic><topic>Arthritis</topic><topic>axial spondyloarthritis</topic><topic>Axial Spondyloarthritis - diagnostic imaging</topic><topic>Bone imaging</topic><topic>clinical risk factors</topic><topic>Decision Support Techniques</topic><topic>Edema</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>imaging findings</topic><topic>Inflammatory diseases</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks, Computer</topic><topic>Prediction models</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Rheumatic diseases</topic><topic>Risk Factors</topic><topic>Sacroiliac Joint - diagnostic imaging</topic><topic>Sacroiliac Joint - pathology</topic><topic>Sclerosis</topic><topic>Sensitivity analysis</topic><topic>TabNet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhaojuan</creatorcontrib><creatorcontrib>Pan, Yiling</creatorcontrib><creatorcontrib>Lu, Yanjie</creatorcontrib><creatorcontrib>Ye, Lusi</creatorcontrib><creatorcontrib>Zheng, Mo</creatorcontrib><creatorcontrib>Zhang, Guodao</creatorcontrib><creatorcontrib>Chen, Dan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of rheumatic diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhaojuan</au><au>Pan, Yiling</au><au>Lu, Yanjie</au><au>Ye, Lusi</au><au>Zheng, Mo</au><au>Zhang, Guodao</au><au>Chen, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors</atitle><jtitle>International journal of rheumatic diseases</jtitle><addtitle>Int J Rheum Dis</addtitle><date>2024-12</date><risdate>2024</risdate><volume>27</volume><issue>12</issue><spage>e70004</spage><epage>n/a</epage><pages>e70004-n/a</pages><issn>1756-1841</issn><issn>1756-185X</issn><eissn>1756-185X</eissn><abstract>ABSTRACT
Objectives
The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors.
Methods
The study is implemented on the data of 942 patients which contains of 707 patients with axSpA and 235 patients with non‐axSpA. To begin with, the patients were split into training (n = 753) and validation (n = 189) cohorts. Secondly, multiple assessors manually extract the features of active inflammation (bone marrow edema) and structural lesions (erosions, sclerosis, ankylosis, joint space changes, and fat lesions). Meanwhile, we utilize 11 machine learning models and TabNet to develop imaging models, which contain six clinical risk factors for clinical models and combined clinical‐imaging models. Finally, the diagnostic performance of the aforementioned models was evaluated in the validation cohort including accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, F1‐score, and Matthew's correlation coefficient (MCC).
Results
Six features were extracted from the imaging findings. The combined clinical‐imaging models outperform the clinical and imaging models. In contrast, the combined clinical‐imaging model via TabNet (CCMRT) achieved the optimal AUC of 0.93(95% CI: 0.89, 0.97). Furthermore, it is observed that the bilateral joint space changes and right‐sided erosions, HLA‐B27 positivity, and CRP values significantly affected axSpA diagnostic prediction.
Conclusion
The prediction model based on clinical risk factors and SIJ‐MRI imaging features can distinguish axSpA and non‐axSpA effectively. In addition, the TabNet demonstrates superior diagnostic efficacy compared with machine learning models.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39690496</pmid><doi>10.1111/1756-185X.70004</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0007-6905-6706</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-1841 |
ispartof | International journal of rheumatic diseases, 2024-12, Vol.27 (12), p.e70004-n/a |
issn | 1756-1841 1756-185X 1756-185X |
language | eng |
recordid | cdi_proquest_miscellaneous_3146948229 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adult Ankylosis Arthritis axial spondyloarthritis Axial Spondyloarthritis - diagnostic imaging Bone imaging clinical risk factors Decision Support Techniques Edema Female Humans Image Interpretation, Computer-Assisted imaging findings Inflammatory diseases Learning algorithms Machine Learning Magnetic Resonance Imaging Male Middle Aged Neural Networks, Computer Prediction models Predictive Value of Tests Reproducibility of Results Rheumatic diseases Risk Factors Sacroiliac Joint - diagnostic imaging Sacroiliac Joint - pathology Sclerosis Sensitivity analysis TabNet |
title | The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20TabNet%20Model%20for%20Diagnosing%20Axial%20Spondyloarthritis%20Using%20MRI%20Imaging%20Findings%20and%20Clinical%20Risk%20Factors&rft.jtitle=International%20journal%20of%20rheumatic%20diseases&rft.au=Zhang,%20Zhaojuan&rft.date=2024-12&rft.volume=27&rft.issue=12&rft.spage=e70004&rft.epage=n/a&rft.pages=e70004-n/a&rft.issn=1756-1841&rft.eissn=1756-185X&rft_id=info:doi/10.1111/1756-185X.70004&rft_dat=%3Cproquest_cross%3E3146948229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149226966&rft_id=info:pmid/39690496&rfr_iscdi=true |