The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors

ABSTRACT Objectives The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors. Methods The study is implemented on the data of 942 patients which contains of 707 patients with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of rheumatic diseases 2024-12, Vol.27 (12), p.e70004-n/a
Hauptverfasser: Zhang, Zhaojuan, Pan, Yiling, Lu, Yanjie, Ye, Lusi, Zheng, Mo, Zhang, Guodao, Chen, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e70004
container_title International journal of rheumatic diseases
container_volume 27
creator Zhang, Zhaojuan
Pan, Yiling
Lu, Yanjie
Ye, Lusi
Zheng, Mo
Zhang, Guodao
Chen, Dan
description ABSTRACT Objectives The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors. Methods The study is implemented on the data of 942 patients which contains of 707 patients with axSpA and 235 patients with non‐axSpA. To begin with, the patients were split into training (n = 753) and validation (n = 189) cohorts. Secondly, multiple assessors manually extract the features of active inflammation (bone marrow edema) and structural lesions (erosions, sclerosis, ankylosis, joint space changes, and fat lesions). Meanwhile, we utilize 11 machine learning models and TabNet to develop imaging models, which contain six clinical risk factors for clinical models and combined clinical‐imaging models. Finally, the diagnostic performance of the aforementioned models was evaluated in the validation cohort including accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, F1‐score, and Matthew's correlation coefficient (MCC). Results Six features were extracted from the imaging findings. The combined clinical‐imaging models outperform the clinical and imaging models. In contrast, the combined clinical‐imaging model via TabNet (CCMRT) achieved the optimal AUC of 0.93(95% CI: 0.89, 0.97). Furthermore, it is observed that the bilateral joint space changes and right‐sided erosions, HLA‐B27 positivity, and CRP values significantly affected axSpA diagnostic prediction. Conclusion The prediction model based on clinical risk factors and SIJ‐MRI imaging features can distinguish axSpA and non‐axSpA effectively. In addition, the TabNet demonstrates superior diagnostic efficacy compared with machine learning models.
doi_str_mv 10.1111/1756-185X.70004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146948229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146948229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2554-968016b861b71f55343bb4560c1a8fe50d64b36505342b40278e5cdf6cd5a9253</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0E4qMwsyFLLCyldmI78VgVCpXKh0qR2CwncYrBiYudCPrvcWjpwMItd7p77tXpPQBOMbrEIQY4oayPU_pymSCEyA443HZ2tzXBB-DI-zeEGI5Zsg8OYs44IpwdAjN_VXAus3vVwDtbKANL6-CVlovael0v4PBLSwOflrYuVsZK17w63WgPn3-md7MJnFRy0dVjXRcheyjrAo6MrnUeNmfav8OxzBvr_DHYK6Xx6mSTe-B5fD0f3fanDzeT0XDazyNKSZ-zFGGWpQxnCS4pjUmcZYQylGOZloqigpEsZhSFSZQRFCWponlRsrygkkc07oGLte7S2Y9W-UZU2ufKGFkr23oRY8I4SaOIB_T8D_pmW1eH6zqKRxHjjAVqsKZyZ713qhRLpyvpVgIj0T1CdFaLznbx84iwcbbRbbNKFVv-1_kA0DXwqY1a_acnho_TtfA37e-QnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149226966</pqid></control><display><type>article</type><title>The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Zhaojuan ; Pan, Yiling ; Lu, Yanjie ; Ye, Lusi ; Zheng, Mo ; Zhang, Guodao ; Chen, Dan</creator><creatorcontrib>Zhang, Zhaojuan ; Pan, Yiling ; Lu, Yanjie ; Ye, Lusi ; Zheng, Mo ; Zhang, Guodao ; Chen, Dan</creatorcontrib><description>ABSTRACT Objectives The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors. Methods The study is implemented on the data of 942 patients which contains of 707 patients with axSpA and 235 patients with non‐axSpA. To begin with, the patients were split into training (n = 753) and validation (n = 189) cohorts. Secondly, multiple assessors manually extract the features of active inflammation (bone marrow edema) and structural lesions (erosions, sclerosis, ankylosis, joint space changes, and fat lesions). Meanwhile, we utilize 11 machine learning models and TabNet to develop imaging models, which contain six clinical risk factors for clinical models and combined clinical‐imaging models. Finally, the diagnostic performance of the aforementioned models was evaluated in the validation cohort including accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, F1‐score, and Matthew's correlation coefficient (MCC). Results Six features were extracted from the imaging findings. The combined clinical‐imaging models outperform the clinical and imaging models. In contrast, the combined clinical‐imaging model via TabNet (CCMRT) achieved the optimal AUC of 0.93(95% CI: 0.89, 0.97). Furthermore, it is observed that the bilateral joint space changes and right‐sided erosions, HLA‐B27 positivity, and CRP values significantly affected axSpA diagnostic prediction. Conclusion The prediction model based on clinical risk factors and SIJ‐MRI imaging features can distinguish axSpA and non‐axSpA effectively. In addition, the TabNet demonstrates superior diagnostic efficacy compared with machine learning models.</description><identifier>ISSN: 1756-1841</identifier><identifier>ISSN: 1756-185X</identifier><identifier>EISSN: 1756-185X</identifier><identifier>DOI: 10.1111/1756-185X.70004</identifier><identifier>PMID: 39690496</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adult ; Ankylosis ; Arthritis ; axial spondyloarthritis ; Axial Spondyloarthritis - diagnostic imaging ; Bone imaging ; clinical risk factors ; Decision Support Techniques ; Edema ; Female ; Humans ; Image Interpretation, Computer-Assisted ; imaging findings ; Inflammatory diseases ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging ; Male ; Middle Aged ; Neural Networks, Computer ; Prediction models ; Predictive Value of Tests ; Reproducibility of Results ; Rheumatic diseases ; Risk Factors ; Sacroiliac Joint - diagnostic imaging ; Sacroiliac Joint - pathology ; Sclerosis ; Sensitivity analysis ; TabNet</subject><ispartof>International journal of rheumatic diseases, 2024-12, Vol.27 (12), p.e70004-n/a</ispartof><rights>2024 Asia Pacific League of Associations for Rheumatology and John Wiley &amp; Sons Australia, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2554-968016b861b71f55343bb4560c1a8fe50d64b36505342b40278e5cdf6cd5a9253</cites><orcidid>0009-0007-6905-6706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1756-185X.70004$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1756-185X.70004$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39690496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhaojuan</creatorcontrib><creatorcontrib>Pan, Yiling</creatorcontrib><creatorcontrib>Lu, Yanjie</creatorcontrib><creatorcontrib>Ye, Lusi</creatorcontrib><creatorcontrib>Zheng, Mo</creatorcontrib><creatorcontrib>Zhang, Guodao</creatorcontrib><creatorcontrib>Chen, Dan</creatorcontrib><title>The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors</title><title>International journal of rheumatic diseases</title><addtitle>Int J Rheum Dis</addtitle><description>ABSTRACT Objectives The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors. Methods The study is implemented on the data of 942 patients which contains of 707 patients with axSpA and 235 patients with non‐axSpA. To begin with, the patients were split into training (n = 753) and validation (n = 189) cohorts. Secondly, multiple assessors manually extract the features of active inflammation (bone marrow edema) and structural lesions (erosions, sclerosis, ankylosis, joint space changes, and fat lesions). Meanwhile, we utilize 11 machine learning models and TabNet to develop imaging models, which contain six clinical risk factors for clinical models and combined clinical‐imaging models. Finally, the diagnostic performance of the aforementioned models was evaluated in the validation cohort including accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, F1‐score, and Matthew's correlation coefficient (MCC). Results Six features were extracted from the imaging findings. The combined clinical‐imaging models outperform the clinical and imaging models. In contrast, the combined clinical‐imaging model via TabNet (CCMRT) achieved the optimal AUC of 0.93(95% CI: 0.89, 0.97). Furthermore, it is observed that the bilateral joint space changes and right‐sided erosions, HLA‐B27 positivity, and CRP values significantly affected axSpA diagnostic prediction. Conclusion The prediction model based on clinical risk factors and SIJ‐MRI imaging features can distinguish axSpA and non‐axSpA effectively. In addition, the TabNet demonstrates superior diagnostic efficacy compared with machine learning models.</description><subject>Adult</subject><subject>Ankylosis</subject><subject>Arthritis</subject><subject>axial spondyloarthritis</subject><subject>Axial Spondyloarthritis - diagnostic imaging</subject><subject>Bone imaging</subject><subject>clinical risk factors</subject><subject>Decision Support Techniques</subject><subject>Edema</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>imaging findings</subject><subject>Inflammatory diseases</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks, Computer</subject><subject>Prediction models</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Rheumatic diseases</subject><subject>Risk Factors</subject><subject>Sacroiliac Joint - diagnostic imaging</subject><subject>Sacroiliac Joint - pathology</subject><subject>Sclerosis</subject><subject>Sensitivity analysis</subject><subject>TabNet</subject><issn>1756-1841</issn><issn>1756-185X</issn><issn>1756-185X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PwzAQhi0E4qMwsyFLLCyldmI78VgVCpXKh0qR2CwncYrBiYudCPrvcWjpwMItd7p77tXpPQBOMbrEIQY4oayPU_pymSCEyA443HZ2tzXBB-DI-zeEGI5Zsg8OYs44IpwdAjN_VXAus3vVwDtbKANL6-CVlovael0v4PBLSwOflrYuVsZK17w63WgPn3-md7MJnFRy0dVjXRcheyjrAo6MrnUeNmfav8OxzBvr_DHYK6Xx6mSTe-B5fD0f3fanDzeT0XDazyNKSZ-zFGGWpQxnCS4pjUmcZYQylGOZloqigpEsZhSFSZQRFCWponlRsrygkkc07oGLte7S2Y9W-UZU2ufKGFkr23oRY8I4SaOIB_T8D_pmW1eH6zqKRxHjjAVqsKZyZ713qhRLpyvpVgIj0T1CdFaLznbx84iwcbbRbbNKFVv-1_kA0DXwqY1a_acnho_TtfA37e-QnA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zhang, Zhaojuan</creator><creator>Pan, Yiling</creator><creator>Lu, Yanjie</creator><creator>Ye, Lusi</creator><creator>Zheng, Mo</creator><creator>Zhang, Guodao</creator><creator>Chen, Dan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-6905-6706</orcidid></search><sort><creationdate>202412</creationdate><title>The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors</title><author>Zhang, Zhaojuan ; Pan, Yiling ; Lu, Yanjie ; Ye, Lusi ; Zheng, Mo ; Zhang, Guodao ; Chen, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2554-968016b861b71f55343bb4560c1a8fe50d64b36505342b40278e5cdf6cd5a9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Ankylosis</topic><topic>Arthritis</topic><topic>axial spondyloarthritis</topic><topic>Axial Spondyloarthritis - diagnostic imaging</topic><topic>Bone imaging</topic><topic>clinical risk factors</topic><topic>Decision Support Techniques</topic><topic>Edema</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>imaging findings</topic><topic>Inflammatory diseases</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks, Computer</topic><topic>Prediction models</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Rheumatic diseases</topic><topic>Risk Factors</topic><topic>Sacroiliac Joint - diagnostic imaging</topic><topic>Sacroiliac Joint - pathology</topic><topic>Sclerosis</topic><topic>Sensitivity analysis</topic><topic>TabNet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhaojuan</creatorcontrib><creatorcontrib>Pan, Yiling</creatorcontrib><creatorcontrib>Lu, Yanjie</creatorcontrib><creatorcontrib>Ye, Lusi</creatorcontrib><creatorcontrib>Zheng, Mo</creatorcontrib><creatorcontrib>Zhang, Guodao</creatorcontrib><creatorcontrib>Chen, Dan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of rheumatic diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhaojuan</au><au>Pan, Yiling</au><au>Lu, Yanjie</au><au>Ye, Lusi</au><au>Zheng, Mo</au><au>Zhang, Guodao</au><au>Chen, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors</atitle><jtitle>International journal of rheumatic diseases</jtitle><addtitle>Int J Rheum Dis</addtitle><date>2024-12</date><risdate>2024</risdate><volume>27</volume><issue>12</issue><spage>e70004</spage><epage>n/a</epage><pages>e70004-n/a</pages><issn>1756-1841</issn><issn>1756-185X</issn><eissn>1756-185X</eissn><abstract>ABSTRACT Objectives The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors. Methods The study is implemented on the data of 942 patients which contains of 707 patients with axSpA and 235 patients with non‐axSpA. To begin with, the patients were split into training (n = 753) and validation (n = 189) cohorts. Secondly, multiple assessors manually extract the features of active inflammation (bone marrow edema) and structural lesions (erosions, sclerosis, ankylosis, joint space changes, and fat lesions). Meanwhile, we utilize 11 machine learning models and TabNet to develop imaging models, which contain six clinical risk factors for clinical models and combined clinical‐imaging models. Finally, the diagnostic performance of the aforementioned models was evaluated in the validation cohort including accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, F1‐score, and Matthew's correlation coefficient (MCC). Results Six features were extracted from the imaging findings. The combined clinical‐imaging models outperform the clinical and imaging models. In contrast, the combined clinical‐imaging model via TabNet (CCMRT) achieved the optimal AUC of 0.93(95% CI: 0.89, 0.97). Furthermore, it is observed that the bilateral joint space changes and right‐sided erosions, HLA‐B27 positivity, and CRP values significantly affected axSpA diagnostic prediction. Conclusion The prediction model based on clinical risk factors and SIJ‐MRI imaging features can distinguish axSpA and non‐axSpA effectively. In addition, the TabNet demonstrates superior diagnostic efficacy compared with machine learning models.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39690496</pmid><doi>10.1111/1756-185X.70004</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0007-6905-6706</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1756-1841
ispartof International journal of rheumatic diseases, 2024-12, Vol.27 (12), p.e70004-n/a
issn 1756-1841
1756-185X
1756-185X
language eng
recordid cdi_proquest_miscellaneous_3146948229
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adult
Ankylosis
Arthritis
axial spondyloarthritis
Axial Spondyloarthritis - diagnostic imaging
Bone imaging
clinical risk factors
Decision Support Techniques
Edema
Female
Humans
Image Interpretation, Computer-Assisted
imaging findings
Inflammatory diseases
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Male
Middle Aged
Neural Networks, Computer
Prediction models
Predictive Value of Tests
Reproducibility of Results
Rheumatic diseases
Risk Factors
Sacroiliac Joint - diagnostic imaging
Sacroiliac Joint - pathology
Sclerosis
Sensitivity analysis
TabNet
title The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20TabNet%20Model%20for%20Diagnosing%20Axial%20Spondyloarthritis%20Using%20MRI%20Imaging%20Findings%20and%20Clinical%20Risk%20Factors&rft.jtitle=International%20journal%20of%20rheumatic%20diseases&rft.au=Zhang,%20Zhaojuan&rft.date=2024-12&rft.volume=27&rft.issue=12&rft.spage=e70004&rft.epage=n/a&rft.pages=e70004-n/a&rft.issn=1756-1841&rft.eissn=1756-185X&rft_id=info:doi/10.1111/1756-185X.70004&rft_dat=%3Cproquest_cross%3E3146948229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149226966&rft_id=info:pmid/39690496&rfr_iscdi=true