Achieving efficiency above 30% with new inorganic cubic perovskites X2SnBr6 (X = Cs, Rb, K, Na) via DFT and SCAPS-1D

The solar sector is shifting towards lead-free, inorganic cubic halide perovskites due to their superior structural, electronic, and optoelectronic properties. This study uses density functional theory (DFT) to examine the structural, electronic, and optical properties of X2SnBr6 (X = Cs, Rb, K, Na)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2025-01, Vol.27 (2), p.1155-1170
Hauptverfasser: Md Ferdous Rahman, Tanvir Al Galib, Rahman, Md Azizur, Rahman, Md Hafizur, Harun-Or-Rashid, Md, Md Al Ijajul Islam, Md Monirul Islam, Dhahri, N, Ahmad, Irfan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1170
container_issue 2
container_start_page 1155
container_title Physical chemistry chemical physics : PCCP
container_volume 27
creator Md Ferdous Rahman
Tanvir Al Galib
Rahman, Md Azizur
Rahman, Md Hafizur
Harun-Or-Rashid, Md
Md Al Ijajul Islam
Md Monirul Islam
Dhahri, N
Ahmad, Irfan
description The solar sector is shifting towards lead-free, inorganic cubic halide perovskites due to their superior structural, electronic, and optoelectronic properties. This study uses density functional theory (DFT) to examine the structural, electronic, and optical properties of X2SnBr6 (X = Cs, Rb, K, Na) and assesses their photovoltaic performance through the Solar Cell Capacitance Simulator – One Dimensional (SCAPS-1D). The results show each material has a direct band gap at the Γ-point, low optical losses, and high absorption, making them promising for solar and optoelectronic applications. For Cs2SnBr6, Rb2SnBr6, K2SnBr6, and Na2SnBr6 absorbers with TiO2 electron transport layer (ETL), power conversion efficiencies (PCE) of 29.22%, 27.25%, 30.62%, and 29.51% were achieved, with open-circuit voltages (VOC) of 1.02, 0.87, 0.83, and 0.77 V, short-circuit currents (JSC) of 32.27, 36.72, 42.69, and 45.48 mA cm−2, and fill factors (FF) of 88.38, 85.18, 85.96, and 81.85%, respectively. Variations in X-cation size notably influence bandgap energy, band structure, and optoelectronic properties, impacting solar cell efficiency. This study supports the development of lead-free hybrid solar cells and other optoelectronic devices.
doi_str_mv 10.1039/d4cp01883d
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146926650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151017566</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-2b4225933d367057d0abb180ff5106a2a55b30f309832fda18ce1d9eb47155893</originalsourceid><addsrcrecordid>eNpdjkFLwzAcxYMoOKcXP8EfRJiwatI0aXrwMDun4lBxE3YbSZpumTOtTdvht7egePDy3jv8eO8hdErwJcE0ucoiXWIiBM32UI9EnAYJFtH-X475ITryfoMxJozQHqpHem1Na90KTJ5bbY3TXyBV0Rqg-Bx2tl6DMzuwrqhW0lkNulGdlqYqWv9ua-NhEc7cTcVhsIBrSP0QXtUQHofwJC-gtRLGkzlIl8EsHb3MAjI-Rge53Hpz8ut99Da5naf3wfT57iEdTYOyu1sHoYrCkCWUZpTHmMUZlkoRgfOcEcxlKBlTFOcUJ4KGeSaJ0IZkiVFRTBgTCe2jwU9vWRWfjfH18sN6bbZb6UzR-CXtZpKQc4Y79OwfuimaynXvOqqbIzHjnH4DK7NlQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151017566</pqid></control><display><type>article</type><title>Achieving efficiency above 30% with new inorganic cubic perovskites X2SnBr6 (X = Cs, Rb, K, Na) via DFT and SCAPS-1D</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Md Ferdous Rahman ; Tanvir Al Galib ; Rahman, Md Azizur ; Rahman, Md Hafizur ; Harun-Or-Rashid, Md ; Md Al Ijajul Islam ; Md Monirul Islam ; Dhahri, N ; Ahmad, Irfan</creator><creatorcontrib>Md Ferdous Rahman ; Tanvir Al Galib ; Rahman, Md Azizur ; Rahman, Md Hafizur ; Harun-Or-Rashid, Md ; Md Al Ijajul Islam ; Md Monirul Islam ; Dhahri, N ; Ahmad, Irfan</creatorcontrib><description>The solar sector is shifting towards lead-free, inorganic cubic halide perovskites due to their superior structural, electronic, and optoelectronic properties. This study uses density functional theory (DFT) to examine the structural, electronic, and optical properties of X2SnBr6 (X = Cs, Rb, K, Na) and assesses their photovoltaic performance through the Solar Cell Capacitance Simulator – One Dimensional (SCAPS-1D). The results show each material has a direct band gap at the Γ-point, low optical losses, and high absorption, making them promising for solar and optoelectronic applications. For Cs2SnBr6, Rb2SnBr6, K2SnBr6, and Na2SnBr6 absorbers with TiO2 electron transport layer (ETL), power conversion efficiencies (PCE) of 29.22%, 27.25%, 30.62%, and 29.51% were achieved, with open-circuit voltages (VOC) of 1.02, 0.87, 0.83, and 0.77 V, short-circuit currents (JSC) of 32.27, 36.72, 42.69, and 45.48 mA cm−2, and fill factors (FF) of 88.38, 85.18, 85.96, and 81.85%, respectively. Variations in X-cation size notably influence bandgap energy, band structure, and optoelectronic properties, impacting solar cell efficiency. This study supports the development of lead-free hybrid solar cells and other optoelectronic devices.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp01883d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cesium ; Density functional theory ; Electron transport ; Energy conversion efficiency ; Energy gap ; Lead free ; Optical properties ; Optoelectronic devices ; Perovskites ; Photovoltaic cells ; Rubidium ; Short circuit currents ; Solar cells ; Titanium dioxide</subject><ispartof>Physical chemistry chemical physics : PCCP, 2025-01, Vol.27 (2), p.1155-1170</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Md Ferdous Rahman</creatorcontrib><creatorcontrib>Tanvir Al Galib</creatorcontrib><creatorcontrib>Rahman, Md Azizur</creatorcontrib><creatorcontrib>Rahman, Md Hafizur</creatorcontrib><creatorcontrib>Harun-Or-Rashid, Md</creatorcontrib><creatorcontrib>Md Al Ijajul Islam</creatorcontrib><creatorcontrib>Md Monirul Islam</creatorcontrib><creatorcontrib>Dhahri, N</creatorcontrib><creatorcontrib>Ahmad, Irfan</creatorcontrib><title>Achieving efficiency above 30% with new inorganic cubic perovskites X2SnBr6 (X = Cs, Rb, K, Na) via DFT and SCAPS-1D</title><title>Physical chemistry chemical physics : PCCP</title><description>The solar sector is shifting towards lead-free, inorganic cubic halide perovskites due to their superior structural, electronic, and optoelectronic properties. This study uses density functional theory (DFT) to examine the structural, electronic, and optical properties of X2SnBr6 (X = Cs, Rb, K, Na) and assesses their photovoltaic performance through the Solar Cell Capacitance Simulator – One Dimensional (SCAPS-1D). The results show each material has a direct band gap at the Γ-point, low optical losses, and high absorption, making them promising for solar and optoelectronic applications. For Cs2SnBr6, Rb2SnBr6, K2SnBr6, and Na2SnBr6 absorbers with TiO2 electron transport layer (ETL), power conversion efficiencies (PCE) of 29.22%, 27.25%, 30.62%, and 29.51% were achieved, with open-circuit voltages (VOC) of 1.02, 0.87, 0.83, and 0.77 V, short-circuit currents (JSC) of 32.27, 36.72, 42.69, and 45.48 mA cm−2, and fill factors (FF) of 88.38, 85.18, 85.96, and 81.85%, respectively. Variations in X-cation size notably influence bandgap energy, band structure, and optoelectronic properties, impacting solar cell efficiency. This study supports the development of lead-free hybrid solar cells and other optoelectronic devices.</description><subject>Cesium</subject><subject>Density functional theory</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Lead free</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Rubidium</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><subject>Titanium dioxide</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpdjkFLwzAcxYMoOKcXP8EfRJiwatI0aXrwMDun4lBxE3YbSZpumTOtTdvht7egePDy3jv8eO8hdErwJcE0ucoiXWIiBM32UI9EnAYJFtH-X475ITryfoMxJozQHqpHem1Na90KTJ5bbY3TXyBV0Rqg-Bx2tl6DMzuwrqhW0lkNulGdlqYqWv9ua-NhEc7cTcVhsIBrSP0QXtUQHofwJC-gtRLGkzlIl8EsHb3MAjI-Rge53Hpz8ut99Da5naf3wfT57iEdTYOyu1sHoYrCkCWUZpTHmMUZlkoRgfOcEcxlKBlTFOcUJ4KGeSaJ0IZkiVFRTBgTCe2jwU9vWRWfjfH18sN6bbZb6UzR-CXtZpKQc4Y79OwfuimaynXvOqqbIzHjnH4DK7NlQQ</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Md Ferdous Rahman</creator><creator>Tanvir Al Galib</creator><creator>Rahman, Md Azizur</creator><creator>Rahman, Md Hafizur</creator><creator>Harun-Or-Rashid, Md</creator><creator>Md Al Ijajul Islam</creator><creator>Md Monirul Islam</creator><creator>Dhahri, N</creator><creator>Ahmad, Irfan</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20250102</creationdate><title>Achieving efficiency above 30% with new inorganic cubic perovskites X2SnBr6 (X = Cs, Rb, K, Na) via DFT and SCAPS-1D</title><author>Md Ferdous Rahman ; Tanvir Al Galib ; Rahman, Md Azizur ; Rahman, Md Hafizur ; Harun-Or-Rashid, Md ; Md Al Ijajul Islam ; Md Monirul Islam ; Dhahri, N ; Ahmad, Irfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-2b4225933d367057d0abb180ff5106a2a55b30f309832fda18ce1d9eb47155893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cesium</topic><topic>Density functional theory</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Lead free</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Rubidium</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Md Ferdous Rahman</creatorcontrib><creatorcontrib>Tanvir Al Galib</creatorcontrib><creatorcontrib>Rahman, Md Azizur</creatorcontrib><creatorcontrib>Rahman, Md Hafizur</creatorcontrib><creatorcontrib>Harun-Or-Rashid, Md</creatorcontrib><creatorcontrib>Md Al Ijajul Islam</creatorcontrib><creatorcontrib>Md Monirul Islam</creatorcontrib><creatorcontrib>Dhahri, N</creatorcontrib><creatorcontrib>Ahmad, Irfan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Md Ferdous Rahman</au><au>Tanvir Al Galib</au><au>Rahman, Md Azizur</au><au>Rahman, Md Hafizur</au><au>Harun-Or-Rashid, Md</au><au>Md Al Ijajul Islam</au><au>Md Monirul Islam</au><au>Dhahri, N</au><au>Ahmad, Irfan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving efficiency above 30% with new inorganic cubic perovskites X2SnBr6 (X = Cs, Rb, K, Na) via DFT and SCAPS-1D</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2025-01-02</date><risdate>2025</risdate><volume>27</volume><issue>2</issue><spage>1155</spage><epage>1170</epage><pages>1155-1170</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>The solar sector is shifting towards lead-free, inorganic cubic halide perovskites due to their superior structural, electronic, and optoelectronic properties. This study uses density functional theory (DFT) to examine the structural, electronic, and optical properties of X2SnBr6 (X = Cs, Rb, K, Na) and assesses their photovoltaic performance through the Solar Cell Capacitance Simulator – One Dimensional (SCAPS-1D). The results show each material has a direct band gap at the Γ-point, low optical losses, and high absorption, making them promising for solar and optoelectronic applications. For Cs2SnBr6, Rb2SnBr6, K2SnBr6, and Na2SnBr6 absorbers with TiO2 electron transport layer (ETL), power conversion efficiencies (PCE) of 29.22%, 27.25%, 30.62%, and 29.51% were achieved, with open-circuit voltages (VOC) of 1.02, 0.87, 0.83, and 0.77 V, short-circuit currents (JSC) of 32.27, 36.72, 42.69, and 45.48 mA cm−2, and fill factors (FF) of 88.38, 85.18, 85.96, and 81.85%, respectively. Variations in X-cation size notably influence bandgap energy, band structure, and optoelectronic properties, impacting solar cell efficiency. This study supports the development of lead-free hybrid solar cells and other optoelectronic devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4cp01883d</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2025-01, Vol.27 (2), p.1155-1170
issn 1463-9076
1463-9084
1463-9084
language eng
recordid cdi_proquest_miscellaneous_3146926650
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Cesium
Density functional theory
Electron transport
Energy conversion efficiency
Energy gap
Lead free
Optical properties
Optoelectronic devices
Perovskites
Photovoltaic cells
Rubidium
Short circuit currents
Solar cells
Titanium dioxide
title Achieving efficiency above 30% with new inorganic cubic perovskites X2SnBr6 (X = Cs, Rb, K, Na) via DFT and SCAPS-1D
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20efficiency%20above%2030%25%20with%20new%20inorganic%20cubic%20perovskites%20X2SnBr6%20(X%20=%20Cs,%20Rb,%20K,%20Na)%20via%20DFT%20and%20SCAPS-1D&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Md%20Ferdous%20Rahman&rft.date=2025-01-02&rft.volume=27&rft.issue=2&rft.spage=1155&rft.epage=1170&rft.pages=1155-1170&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp01883d&rft_dat=%3Cproquest%3E3151017566%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151017566&rft_id=info:pmid/&rfr_iscdi=true